
What parens? All I see is the program!
(an introduction to Clojure)

Trifork A/S, Headquarters
Margrethepladsen 4,
DK-8000 Århus C,
Denmark
info@trifork.com
http://www.trifork.com JAOO 2010 Geek night

August 31st, 2010,
Trifork, Aarhus

mailto:info@trifork.com
http://www.trifork.com/

2

Pop-quiz: consider this class

 Suppose we have multiple threads calling both read
and write without synchronization.

 Now, what can happen?

public class HashMapDemo {
private final static Map<Integer, Integer> m = new HashMap(1);
public static void write(final int offset) {

for (int i = 0; i < 10000; i++) {
int k = offset+i;
m.put(k, k+offset);

}
}
public static void read(final int offset) {

 for (int i = 0; i < 10000; i++) {
 int key = offset+i;
 Integer val = m.get(key);
 if (val != null) {
 if (val.intValue() != -key) {
 System.out.println("Key and value don't match...");
 }
 }
 }
 }

3

Non-obvious bug 1

 ArrayIndexOutOfBoundsException?

krukow:~/workspaces/trifork/concurrency$ java -cp bin hashmap.HashMapDemo
Exception in thread "Thread-0"
 java.lang.ArrayIndexOutOfBoundsException: 23

at java.util.HashMap.get(HashMap.java:301)
at hashmap.HashMapDemo.read(HashMapDemo.java:17)
at hashmap.HashMapDemo$1.run(HashMapDemo.java:32)
at java.lang.Thread.run(Thread.java:637)

WRITE done: j = 1
READ done: j = 2
READ done: j = 4
READ done: j = 6
WRITE done: j = 3
READ done: j = 8
READ done: j = 10

4

Non-obvious bug 2

 Inifinite loop!!

krukow:~/workspaces/trifork/concurrency$ java -cp bin hashmap.HashMapDemo
READ done: j = 0
READ done: j = 2
WRITE done: j = 1
WRITE done: j = 3
…
READ done: j = 12
WRITE done: j = 11
READ done: j = 14
WRITE done: j = 15
WRITE done: j = 17
READ done: j = 18
READ done: j = 16
WRITE done: j = 19
^[[A
^[[B
^[[A
^[[A
^C

5

Is this artificial?
 NO! This does happen in “real world” programs

– Incorrect optimizations:
• “I really can't pay the cost of synchronization (even though I

haven't measured it), and in this particular case a data-race
is safe.”

– Non-obvious sharing:
• “I thought this object wasn't shared between multiple

threads.”

– Design changes.
• In the original design this object wasn't shared.

• But now it is, for some reason: design change, (bad)
optimizations, singleton/caching.

– Bad library/framework.
• The bug may not even be in your code!

 Still dont believe me? I've seen the “endless loop” happen on
production servers this month.

6

Apache MyFaces 1.1.8 (JSF impl).

 JSF is a web framework for Java which offers a
UI component model for the web development.
– Componets are placed on pages using e.g. the JSP

language with tags for each component.

– UIComponentTag: abstract super class of all JSP tags
that represent components.

 The findComponent(..) method

 /**
 * Return the corresponding UIComponent for this tag, creating it
 * if necessary.
 * <p>
 * If this is not the first time this method has been called, then
 * return the cached component instance found last time.
 * <p>...

7

Code: UIComponentClassicTagBase

 As it turns out, this method can be called by
several threads.

 setProperties(..) sets a number of key value pairs
in
– A HashMap :)

private UIComponent _componentInstance = null;
protected UIComponent findComponent(FacesContext context)
 throws JspException
 {
 if (_componentInstance != null) return _componentInstance;
 UIComponentTag parentTag = getParentUIComponentTag(pageContext);
 if (parentTag == null)
 {
 //This is the root
 _componentInstance = context.getViewRoot();
 setProperties(_componentInstance);
 return _componentInstance;
 }
 //...

8

MyFaces JSF Portlet Bridge (trunk)

 Double checked locking (+ another bug - spot it!)
– Broken lazy initialization technique

– Unsound optimization

private void initBridge() throws PortletException {
 if (mFacesBridge == null) {
 try {
 // ensure we only ever create/init
 // one bridge per portlet
 synchronized(mLock) {
 if (mFacesBridge == null)
 {
 mFacesBridge = mFacesBridgeClass.newInstance();
 mFacesBridge.init(getPortletConfig());
 }
 }
 }
 catch (Exception e) {
 throw new PortletException("...", e);
 }
 }
 }

9

More real-life bugs...

 IceFaces: unsound “optimization”

– Store a mutable object (SwfLifecycleExecutor) in a
map in application scope
• Each requests “initializes” it setting variables

– Design changes: works in 1.8.0. broken 1.8.2

 Spring WebFlow: unintended sharing
– Storing non-thread safe object in application scope

– https://jira.springframework.org/browse/SWF-976

 Goetz: are all stateful webapps broken?
http://www.ibm.com/developerworks/library/j-jtp09238.html

https://jira.springframework.org/browse/SWF-976
http://www.ibm.com/developerworks/library/j-jtp09238.html

10

This is production code which has gone through
QA!

I'm not pointing fingers, but trying to convince you
that it is easy to make mistakes and everyone

does it.. The list goes on and on...

11

What can we learn?
 Immutable data saves the day

 Not sharing data (thread confinement or serialization)
for mutable data

 Synchronize when accessing shared mutable data

– BOTH reader and writer must synchronize (visibility)

– Don't try to be clever and optimize

– Beware of non-obvious sharing
• Is this mutable piece of data shared?

– Can be hard in case of multiple locks...
• Easy to forget, hard to debug, fail under load

 Use data structures from java.util.concurrent

– atomics or volatile on JDK1.5+

 Beware with lazy initialization, singletons, caches

12

What if...

 ... there was a practical language
– where all objects were immutable by default, even

common data structures like hash table and vector

(→ immutability saves the day)

– where all shared mutable state was explicitly marked
in the program (→ obvious mutable sharing)

– where all interaction with mutable state was managed
by the language runtime (→ visibility)

– where synchronization was possible without the
complexity of locks (→ atomic multi-operations easy)

 Then many, although not all, concurrency
problems become much easier

13

Clojure is such a language
:)

14

What else?

 The most important part of Clojure is its state
management features
– vars, refs, atoms, agents

– Functional (pure functions as basic building blocks)

 But there are other important parts
– Dynamic (flexible, expressive)

– Meta-programming and DSL facilities (a Lisp, macros)

– Designed to be hosted; with good interop (JVM, CLR)

– Programming to contracts (protocols)
• Sequences and library

– Fast by default (and with “knobs” for hot-spots)

– and “goodies” (laziness, metadata, destructuring,
multi-methods,...)

15

Obviously WAY too much to cover so

Come to JAOO Aarhus 2010 to hear much more
http://jaoo.dk/aarhus-2010/speaker/Rich+Hickey

http://jaoo.dk/aarhus-2010/speaker/Stuart+Halloway

Clojure Tutorial with Stuart!

Also JAOO and the Danish Clojure Users Group
is organizing a free event where you can meet
Rich Hickey, Stuart Halloway as well as many

Clojure users in Denmark
https://secure.trifork.com/aarhus-2010/freeevent/index.jsp?eventOID=2698

The Shameless Plug...

20% Discount if member of DCUG (www.clojure.dk)
 - free choice of tutorial/conference days.
Goto www.clojure.dk and sign up, then email me :) kkr@trifork.com

http://jaoo.dk/aarhus-2010/speaker/Rich+Hickey
http://jaoo.dk/aarhus-2010/speaker/Stuart+Halloway
https://secure.trifork.com/aarhus-2010/freeevent/index.jsp?eventOID=2698
http://www.clojure.dk/
http://www.clojure.dk/
mailto:kkr@trifork.com

16

Agenda

 Immutability and functional programming in
Clojure

 Managed change and shared data

 Demos if we have time
– Host interoperability

– Protocols (circuitbreaker)

– macros

17

Value, state, identity: Clojure way

 What is a value?
– An immutable object

 What is an identity?
– A logical entity that takes on a unique value at any

given time

– Takes on a series of values over time

– Usually has one or many names

 What is State?
– The value of an identity at a given time.

– Snapshot: a value: stable, immutable.

 See refs for more info...

18

Slide by Hickey
JVM lang summit

19

Values

20

Atomic Data Types

21

Composite Data Types

22

Persistent Data Structures
 In Clojure, generally, all data structures and

objects are immutable
– Sharing among threads - no synch needed

– Can be saved for later inspection

– Provides composite values

 There are efficient operations operations for
creating variants of a data structure, for example:
– If M is a clojure map, then assoc(M,k,v) is a clojure map

which is like M except that it maps key k to value v
– (within 1-4x their mutable counterparts, or faster :)

 Further: they are persistent meaning that the
operations are non-destructive, e.g.,
– Both M and assoc(M,k,v) are usable and preserve their

performance guarantees.

23

... that doesn't entail copying the entire structure(!)

See my blog for explanation:

http://blog.higher-order.net/2009/02/01/understanding-clojures-persistentvector-implementation/

http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice/

http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii/

Also

http://blog.higher-order.net/2010/06/11/clj-ds-clojures-persistent-data-structures-for-java/

NO!

http://blog.higher-order.net/2009/02/01/understanding-clojures-persistentvector-implementation/
http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice/
http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii/
http://blog.higher-order.net/2010/06/11/clj-ds-clojures-persistent-data-structures-for-java/

24

Sequence library and
pure functions

25

Sequences: example of
programming to abstractions

 Lift the first/rest abstraction off of concrete lists

 Function seq
– (seq coll) gives nil if empty otherwise a seq on coll

– first, calls seq on arg if not already a seq
• returns first item or nil

– rest, calls seq on arg if not already a seq
• returns the next seq, if any, else nil

 Most library functions are fully lazy

 Vast library works on: all Clojure DS, Java: Strings,
arrays, collections, iterables

– All pure functions

26

Sequence library examples

drop 2, [1, 2, 3, 4, 5] → (3, 4, 5)

cycle [1, 2, 3] → [1, 2, 3, 1, 2, 3, …]

partition 3, [1, 2, 3, 4, 5, 6] → ((1 2 3) (4 5 6))

interpose \, "Fred" → (\F \, \r \, \e \, \d)

map inc [1, 2, 3] → (2, 3, 4)

reduce +
 range 100 → 4950

27

Examples: Map functions

def m {:a 1, :b 2, :c 3}

m :b → 2 (maps are functions)

:b m → 2 (keywords are functions)

keys m → (:a, :b, :c)

assoc m, :d 4 → {:a 1, :b 2, :c 3, :d 4} ;;m is unchanged

dissoc m, :a → {:b 2, :c 3} ;;m is unchanged

map :name [{:name "Fred"}, {:name "Ethel"}]
→ ("Fred", "Ethel")

merge-with +, m, {:a 2, :b 3} → {:a 3, :b 5, :c 3}

28

Records: another kind of object

 Records aren't like objects in traditional OO
languages (think Java), but there are similarities
– Represent “domain types”

– Store data in fields; can have associated “methods”

– Can implement host interfaces

 But there are also differences with traditional
objects
– Records are immutable ('setters' create new records)

– Automatic impl. of hashCode, equals, toString

– Extensible and map-like behaviour: implementents interfaces
clojure.lang.IPersistentMap and java.util.Map

– No inheritance

– Methods & polymorphism only via interfaces and protocols
(more on that)

29

If it were Java a record would be
similar to this

public class PersonRecord implements IPersistentMap, java.util.Map // and more...
{

public final String firstName;
public final Integer age;
public final AddressRecord address;
public PersonRecord(String firstName, Integer age, AddressRecord address) {

this.firstName = firstName;
this.age = age;
this.address = address;

}

public Object get(Object key) {
if (isFirstnameKey(key)) {

return firstName;
} //else {}
//...
return null;

}

public IPersistentMap assoc(Object key, Object val) {
//create a map which is like this one
//but has also key -> value
return null;//

}
//... more methods...

}
defrecord Person,
 [fi rstname, age, address]

30

Map-like nature of Records

 The map-like nature
of records means
– Records can be extended as a map

– In general, any function that works on maps works on
records

defrecord Person :
 [fi rstname, age, address]

def p
 Person. "Karl", 42, nil

assoc p, :lastname, "Krukow" #:Person{:fi rstname "Karl",
 :age 42,
 :address nil,
 :lastname "Krukow"}

keys p (:fi rstname, :age, :lastname)

 second,
 vals p 42

31

Protocols: another kind of interface

 Protocols aren't like interfaces in traditional OO
languages (think Java), but there are similarities
– Like interfaces, protocols are a grouping of “method” sigs.

– The “methods” are polymorphic: depending on the type of the
receiver an impl. is selected

 But there are also differences with traditional
interfaces
– There is no type hiearchy

– Protocols are extensible: any protocol can dynamically be
extended to reach any type (but you should own the either the
type or the protocol)

– Protocols “methods” aren't methods they really are functions
(their first argument can be thought of as the 'receiver')

32

If it were Java a protocol would be
similar to this

public interface Indexed {
Object at(int i);
Object atWithDef(int i, Object notFound);

}
public interface TopScored {

Object getTopScore();
}

public class HighscoreRecord implements Indexed,TopScored//and more
{

public final IPersistentVector scores;
public HighscoreRecord(IPersistentVector scores) {

this.scores = scores;
}
public Object getTopScore() {

return nth(0);
}
public Object at(int i) {

return this.scores.nth(i);
}
public Object atWithDef(int i, Object notFound) {

return this.scores.nth(i, notFound);
}

//and much more
}

defprotocol Indexed,
 at [this, i] "return el at ith pos",
 atwithdef [this, i, d] "...."

defprotocol TopScored,
 topscore [this] "return topscore"

defrecord Highscores [scores],
 Indexed,
 at [this i],
 nth scores, i
 atwithdef [this, i, d],
 nth scores, i, d

 TopScored,
 topscore [this],
 at this, 0

def h
 Highscores. [42 22 2]

topscore h ;; gives 42

33

Extensibility of procotols

 As mentioned, protocols can be extended to all
types.
– for example it is possible to extend our Indexed

protocol to Java native type String

 Can be done at any point in the program

defprotocol Indexed,
 at [this, i] "return el at ith pos",
 atwithdef [this, i, d] "...." extend-protocol Indexed,

 String,
 at [str i],
 . str charAt i
 atwithdef [str i d],
 ;define implementation on string here...

at "Karl" 2

;result is → \r

34

Managing change

35

Clojure philosophy

 Clojure supports programming with pure
functions and persistent data structures
– this even extends to user defined types & interops

with well with host

 Philosophy: Most parts of most programs could
and should be functional
– Yet we recognize that most real-world programs are

not functions; they are processes.

 The future is concurrent; locks and mutable
objects make complex, intractable programs

 In Clojure everything is pure functional, except
– ”Reference types” which have a concurrency-aware

semantics for change. (vars, atoms, agents, refs)

36

Traditional OO approach:
Direct References to Mutable Objects

Slide by Hickey

37

Clojure approach: indirect
references to values

Slide by Hickey

38

Atomic update

Slide by Hickey

39

Clojure References

 The last slides show an abstract model of change
– Only references mutate: in a controlled way

– Allows for multiple semantics

 Currently 4 types of references, all with
concurrency semantics:
– Vars: shared root binding, isolate changes in thread

– Refs: synchronous, coordinated

– Atoms: synchronous, independent

– Agents: asynchronous, independent

 deref or reader-macro @ to get value

 Different mutator functions for each type
– Same syntactic form: function reference-type opt-args

40

Slide by Hickey
JVM lang summit

41

* Slide by Rich Hickey,
Jvm Lang. Summit 2009

 Keynote

42

Examples in code

user> def a
 atom 1
#'user/a
user> @a
1
user> swap! a, inc
2
user> @a
2

 Atom

43

* Slide by Rich Hickey,
Jvm Lang. Summit 2009

 Keynote

44

Examples in code

 Agent
user> def ag
 agent 1
#'user/ag
user> @ag
1
user> send ag dec
#<Agent@54c21095: 1>
user> @ag
0

45

* Slide by Rich Hickey,
Jvm Lang. Summit 2009

 Keynote

46

* Slide by Rich
Hickey,

Jvm Lang.
Summit

2009
 Keynote

47

Examples in code
 Ref

user> def k
 ref 1

user> def mk
 ref -1

user> [@k,@mk]
[1 -1]
user> dosync
 let [x, alter k inc]

 ref-set mk, - x
user> [@k,@mk]
[2 -2]

48

* Slide by Rich Hickey,
Jvm Lang. Summit

2009 Keynote

49

Examples in code
 Transactional scan: consistent snapshot

 Non-transactional/panning scan

user> def k
 ref 1

user> def mk
 ref -1

user> dosync
 [@k,@mk]
[1, -1]

;;run in parallel
;;dosync
;; let [x, alter k inc]
;; ref-set mk, - x

user> [@k, @mk]
[724452, -724453]

50

Examples in code

user> def a
 atom 1
#'user/a
user> @a
1
user> swap! a, inc
2
user> @a
2

 Atom

 Agent

 Ref

 var

user> def ag
 agent 1
#'user/ag
user> @ag
1
user> send ag dec
#<Agent@54c21095: 1>
user> @ag
0

user> def k
 ref 1

user> def mk
 ref -1

user> [@k,@mk]
[1 -1]
user> dosync
 let [x, alter k inc]

 ref-set mk,
 - x

user> [@k,@mk]
[2 -2]user> def ag

 agent 1
#'user/ag
user> @ag
1
user> send ag dec
#<Agent@54c21095: 1>
user> @ag
0

user> def x 42
user> def y x
user> binding [x, "KARL: "]

 str x, y
"KARL: 42"
user> x
42

51

Some Clojure answers...
 Immutable data saves the day

 Thread confinement/serial

 Synchronize when accessing
shared mutable data

– Can be hard in case of
multiple locks...

 Beware of non-obvious sharing

– Is this mutable piece of
data shared?

 Use data structures from
java.util.concurrent

 Beware with lazy initialization,
singletons, caches

 immutable by default

 vars confine, and agents serial

 System manages
synchronization with atom, ref

– No user-code synch,
Non-interferring reads

 All reference types are marked

– Data is always immutable in
Clojure :)

 Use data structures from
java.util.concurrent

– Not needed as often

 Beware with lazy initialization,
singletons, caches

– Immutability helps!

52

Confession...
I've not presented Clojure syntax

completely accurately...

53

Clojure syntax

 Clojure compiler is defined in terms of data
structures, not text.

 There are textual representations of all the data
structures and objects (),[],{},#{},...
– There are some parens – but not too many, actually

 Clojure is at least as compact as Ruby/Python...

 def k ref 1

 dosync
 let x alter k inc
 ref-set mk - x

 (())

 (
 ([()]
 (()))

(defprotocol Indexed
 (at [this i] "return el at ith pos")
 (atwithdef [this i d] "...."))
(defrecord Highscores [scores]
 Indexed
 (at [this i] (nth scores i))
 (atwithdef [this i d] (nth scores i d)))

54

Syntactic weight: Ruby 1.9 vs Clojure
Note semantics is vastly different although syntax is similar

m = {:name => "Karl", :age => 42}
m[:name]

class Person
 attr :name,:age
 attr_writer :name,:age
end

p = Person.new
p.name="Karl";p.age=42;

[p,p,p].map &:name
=> ["Karl", "Karl", "Karl"]

([p,p,p].map &:age).reduce(&:+)
=> 126

(def m {:name "Karl", :age 42})

(m :name)
(:name m)

(defrecord Person[name age])
(def p (Person. "Karl" 42))

(map :name [p p p])
=> ("Karl" "Karl" "Karl")

(reduce + (map :age [p p p]))
=> 126

(->> [p p p] (map :age)(reduce +))
=> 126

55

References
 JAOO 2010 http://jaoo.dk/aarhus-2010 :),

DCUG: www.clojure.dk

 http://clojure.org/

 http://clojure.blip.tv/

 Stuart Halloway: Programming Clojure
– intro

 Chris Houser, Michael Fogus: The Joy of Clojure
– Deeper

 Mark Volkmann, STM article

– http://java.ociweb.com/mark/stm/article.html

 Rich Hickey
– Are we there yet?

http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
Value, state, identity
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey

http://jaoo.dk/aarhus-2010
http://www.clojure.dk/
http://clojure.org/
http://clojure.blip.tv/
http://java.ociweb.com/mark/stm/article.html
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey

	What parens? All I see is the program.
	Consider this...
	Non-obvious bug 1
	Non-obvious bug 2
	Is this synthetic?
	Apache MyFaces
	Code: UIComponentClassicTagBase
	JSF Portlet Bridge (MyFaces)
	More real-life bugs
	This is production code
	What can we learn?
	What if.
	Meet Clojure
	When else?
	The shameless plug..
	Agenda
	Value, state, identity: Clojure
	Epochal time model
	Values
	Atomic types
	Composite data types
	Persistent Data Structures
	NO!
	Sequence lib. and pure functions
	Sequences
	Sequence library examples
	Examples: Map functions
	Records: another kind of object
	If it were Java
	Map-like nature of records
	Protocols: another kind of interface
	It it were Java (protocols)
	Extensibility of protocols
	Managing change
	Clojure Philosophy
	Traditional OO approach
	Persistent Edit
	Atomic Update
	Clojure References
	Epochal time model (again)
	Atoms - CAS
	Atom: example
	Agents as Time construct
	Example: agent
	STM
	STM as Time construct
	Ref
	Perception in MVCC STM
	Transactional/non-transactional scan
	and vars
	Some Clojure answers
	Confession...
	Clojure Syntax
	Syntactic weight: ruby vs clojure
	Some references

