
Objective-C is an
old, weird thing	

The Feel of Objective-C	

Objective-C	

•  Start with C	

•  Add the Smalltalk object model as a library	

•  Add a little syntax for	

•  Class and method definition	

•  Method calls	

•  A few object literals	

Objective-C	

Objective-C	

•  A mashup of two languages	

•  Smalltalk grafted onto C	

•  The boundaries are���
obvious:	

•  Non-C-like syntax in���
special “zones”	

•  Flag characters to mark Objective-C zones	

•  In C code, objects are opaque	

Objective-C: ���
The Language	

Calling Methods	

[netService stop]	

Variable containing
target object	

Message selector	

Brackets indicate
Objective-C call	

Java equivalent: ���
netService.stop()	

Methods With
Arguments	

[serviceNameField setEnabled:YES]	

[in_stream read:readBuffer maxLength:4096]	

(Yes, that method name is “read:maxLength:”)	

Interfaces	

@interface Album : MusicObject	
{	
 NSMutableArray *_sampleURLs, *_sampleTitles;	
}	

+ (Album*) albumWithEntryID: (NSString*)entryID;	

- (PSEntry*) entry;	

@property (copy) NSString* entryID;	

@end	

superclass	

instance variables	

methods	

properties	

NSWhat?	

•  Objective-C has no namespaces	

•  Libraries (and apps) use prefixes instead	

•  Many type names begin with “NS” — for
NeXTStep	

Implementations	

// Album.m	

@implementation Album	

// method definitions go here	

@end	

Types	

•  Object variables are usually pointers	

•  e.g., NSString *	

•  Methods can return any C type	

•  including object pointers	

•  use Objective-C method call anywhere
an expression is valid	

•  Parameters can also be any C type	

Basic Types	

•  NSNumber, NSInteger	

•  NSString	

•  special literal syntax: @"foo"	

•  NSMutableString	

•  NSArray and NSMutableArray	

•  NSDictionary and NSMutableDictionary	

Allocation	

[NSAlert alloc]	 Allocates unitialized object	

[new_object init]	 Performs default initialization	

[[NSAlert alloc] init]	 Standard init pattern	

NSAlert *alertSheet;	
alertSheet = [[NSAlert alloc] init];	

[NSAlert new]	 Rarely used equivalent	

Initialization	

[[NSString alloc] init]	

[[NSString alloc] initWithBytes:value length:strlen(value)]	

[[NSString alloc] initWithBytes:value length:strlen(value)  
 encoding:NSASCIIStringEncoding]	

[[NSString alloc] initWithFormat:@"%@/%@",  
 parentAbsPath, relativePath]	

[[NSString alloc] initWithData: data 	
 encoding: NSUTF8StringEncoding]	

[[NSString alloc] initWithString: username]	

[[NSString alloc] initWithContentsOfFile: path]	

Special values	

•  self	

•  super	

•  nil	

Memory Management	

•  Objective-C v4 supports garbage collection	

•  (but not on the iPhone, yet...)	

•  Manual reference counting	

[obj retain]	

[obj release]	

Autorelease Example	

•  There is always an autorelease pool available.	

•  Allows simpler division of memory
management responsibility.	

// At the beginning of a block, do this: 	
NSAutoreleasePool* pool=[[NSAutoreleasePool alloc] init];	

// Then, within the block and also in methods	
// *called* from that block, do things like this: 	
return [[time retain] autorelease];	

// Then, at the end of the block, release the pool:	
[pool release];	

Incremental Typing	

•  Usually, Objective-C is statically typed	

•  (or as static as C will allow)	

•  The typedef id represents “any Objective-C
object”	

•  You can write methods that work on any
type	

Protocols	

•  In Smalltalk terminology, a ‘protocol’ is a set

of methods that may be implemented by
many classes.	

•  In Objective-C, this was formalized to
resemble what you may know as an
‘interface’ in Java.	

Protocols	

@protocol KeyValueAccess	

- valueForKey:(NSString*)key;	
- setValue:(id)val forKey:(NSString*)key;	

@end	

id <KeyValueAccess> obj = ...;	
[obj setValue:@”Peter” forKey:@”name”];	

protocol type	

Protocols	

// intersection types	
id <InputStream, OutputStream> stream = ...	

// or even...	
NSFooBar <KeyValueAccess> foobar = ...;	

// In Java, such types can be used to	
// declare Class parameter constraints...	

Slut	

