
Write Less Code!
Trends in Programming Style

Kresten Krab Thorup, Trifork
krab@trifork.com

Today’s Thesis

A. A large code base is hard to
understand.

B. You are likely to introduce bugs in a
hard-to-understand piece of code.

implication?

Large code bases are likely buggy.

Which Solution?

• Write Less Code?

• Write Code that can be Understood?

[hint: I tricked you to come today]

Defects per KLOC

• Industry Average: “about 15 - 50 errors per KLOC.”

• Microsoft Applications: “about 10 - 20 defects per
1000 lines of code during in-house testing, and 0.5
defect per KLOC in released product (Moore 1992).”

• “Harlan Mills pioneered ‘cleanroom development’, a
technique that has been able to achieve rates as low as
3 defects per 1000 lines of code during in-house
testing and 0.1 defect per 1000 lines of code in
released product” (Cobb and Mills 1990).

Check this

#!perl -pl
s!.!y$IVCXL426(-:$XLMCDIVX
$dfor$$_.=5x$&*8%29628;$$$_=
$_!egfor-4e3..y/iul-}/-$+ /
%s''$';*_=eval

perlmonks.org

#!perl -pl
s!.!y$IVCXL426(-:$XLMCDIVX$dfor$$_.=5x$&*8%29628;$$$_=$_!egfor-4e3..y/iul-}/-$+ /%s''$';*_=eval

And this...

(0/:l)(_+_)

http://www.google.com/search?q="(0/:l)(_%2B_)"

Which really means...

(0/:list)(_+_)

Which really means...

list./:(0)(_+_)

Which really means...

list.foldLeft(0)(_+_)

Which really means...

list.foldLeft(0)(x,y => x+y)

Which really means...

still convinced?

Writing fewer lines of code
is not in itself a means to

improve quality

... understandable code is
REBOOT

Write Code that
can be Understood!

Trends in Programming Style

Kresten Krab Thorup, Trifork

I’m no expert

I’m on a out to figure out how to

improve software quality

by means of

improving software
understandability

time

co
m

pl
ex

it
y

ab
ili

ty
performance / scaleability

understandability

object-oriented
modeling

???

dynamic
virtual machines

multi-core
hardware

Trends on
Understandability

• Software Craftsmanship

• Clean Code [Bob Martin], Implementation
Patterns [Kent Beck]

• Shared Code Ownership / Code Review

• Automated Build & Test

• Domain Specific Languages

• Domain Driven Design - DDD / Modeling

Meeting
Richard Stallman

Software
Craftmanship

• Being a “Software
Professional”

 Apprentice !
 Journeyman !
 Master

• Taking responsibility,
Learning-by-doing,
long time customer
relationships, ...

Implementation Patterns
/ Clean Code

• Simple, statement-level little rules for
how to structure code.

• Gives you some vocabulary to talk
about code quality at the detail level.

“Implementation Patterns”

if (myContainer.hasItems()) {
 // ...
}

If’s are evil... ALLOW THEM WHEN

Condition can be expressed without AND, OR, operators

“Implementation Patterns”

if (this.isVisible) {
 // ...
}

If’s are evil... ALLOW THEM WHEN

Condition is about a local field

“Implementation Patterns”

if (myCertificates.count() < 3) {
 // ...
}

If’s are evil... ALLOW THEM WHEN

Condition is is a non-float comparison, i.e.

“Implementation Patterns”

if (isVisible && !isParent) {
 // ...
}

If’s are evil... BE CAUTIOUS

When there is more than one AND/OR operators, i.e.

“Implementation Patterns”

if (!isSenior) {
 // ...
}

If’s are evil... BE CAUTIOUS

When there is negative logic

positive statements are easier to understand

“Implementatin Patterns”

Good to read, because they give you an
awareness of “what good code is”.

More than a “coding convention”

It’s an invitation to have your own opinion!

Sharing Code

• We have a lot to learn from open source
projects> Distributed Collaboration

• In the late 80‘s the GNU project
developed the style of cooperation that is
main stream today.

• XP/practices for “pairing” when writing
production code.

Using Version Control

• First we used file-oriented version control

• Then repository-oriented CVS, SVN, ...

•The new kids in town:
 GIT, Mercurial & Darcs

GIT [github] & Mercurial [google code]

No central repository

Edit history is a DAG of deltas

Each revision identified by strong hash
of all edits included.

Automated Build

• Atlassian, Australian maker of developer
tools, measures project performance by
timing

• Compile-run cycle [short]

• Checkout-build-deploy [from scratch]

• Imagine what this does to make a
codebase accessible to a new developer
joining the project.

Continuous Integration

• Upon every “commit” to the source code
repository, run automated build and test.

Continuous Delivery
• Deploy to production upon Commit

• The Developer’s responsibility

• Bugs are much cheaper to fix right away

• Suitable for online systems;

• Need infrastructure to automatically
track issues

• Jez Humble’s new book.

Domain Err
• The worst kind of “bug” is if your program

does not do what the customer wants!

• Ideal: Make your program, such that the
customer can read it; or even better: so he
can write it.

• End-user programming

• Domain Specific Languages

• Domain Driven Design

• Short development cycles ! feedback

End-User Participation

• Domain Specific Languages

• User’s typically write business-logic or
test cases in specialized languages

• Intentional “Domain Workbench”

• Excel on steroids, still being proven

Technical “Domain
Specific Languages”

• Rails is a domain specific language for the
“domain” of creating database backed web
applications.

• FIT is a test framework, that allows end-
users to write tests/specifications in a
tabular format in Excel or Microsoft
Word.

• In dynamic languages (Ruby, Smalltalk,
Javascript, Groovy, Ioke, ...) it is quite
easy to create your own.

Expert “Domain
Specific Languages”

• ERP systems (SAP, Maconomy, Navision)
typically embody a language specifically
for “application programming”.

• Trifork Athene uses a DSL for doctors to
describe procedures for determining
diseases.

• There needs to be a good number of
usages, before a DSL makes sense. One
use case is seldom enough.

DSLs: create your own

• Internal DSLs

• Use the language you already use (Java,
C#, Ruby) to express things more
concisely

• External DSLs

• Write a parser/graphical editor
specifically for your domain.

DDD

• Focus on understanding
the customer’s domain.

• Design [code] guide
lines for how to make
this successful.

• OOA&D popularized
by an american.

