
Er vi komplette idioter?

Jesper Boeg og Ole Friis Østergaard

March 23. and 24., 2011



Agenda

 Agile Reminder

 The economic perspective

 TDD

 You get what you measure!

 Right perception of time

 Transparency

 Pair Programming

 Trust

 Fail fast

 Force of habit

 Summary



HOW MANY BELIEVE AGILE IS 

THE RIGHT WAY TO GO?



HOW MANY ARE DOING 

AGILE DEVELOPMENT?



So naturally we are going to:

1. Satisfy the Customer through Working Software

2. Deliver Early and Often

3. Create and Embrace Change

4. Focus on Quality

5. Create Transparency through Visualization

6. Endorse Sustainable Pace

7. Bring People Closer Together

8. Trust in People and Decentralize Authority

9. Improve Continuously



We know XP “best practices”!

 Talk to the customer

 Practice pair programming

 Do TDD

 Review your code

 Clean up your code



WHY?



Because it makes economic sense

1. Satisfy the Customer through Working Software

2. Deliver Early and Often

3. Create and Embrace Change

4. Focus on Quality

5. Create Transparency through Visualization

6. Endorse Sustainable Pace

7. Bring People Closer Together

8. Trust in People and Decentralize Authority

9. Improve Continuously



TDD (done right)

 You’re constantly reminded of the 

whereabouts of your bad code

 Non-decoupled code is hard to test – use 

this knowledge to split up into more 

methods / classes / services

 Small bugs are quickly ironed out

 By naming your tests, you’re forced to 

explain what your code does and why



TDD (done wrong)

 If you don’t realise that the cause of 

troublesome tests is bad code, writing 

tests can be very frustrating

 Integration tests (which actually has 

nothing to do with TDD) are slow and 

fragile

 If just one team member doesn’t care 

about the tests, everybody else suffers



BUT ARE WE REALLY DOING 

IT?



YOU GET WHAT YOU 

MEASURE!



You Get What You Measure 1/2

 Don’t kid yourself!

 When you measure story points you get 

story points!

 You don’t get:

– Functional Quality

– Maintainability

– Long term focus

– Sustainable pace



You Get What You Measure 2/2

 When your plan becomes your success 
criteria what you get is your ability to follow 
a plan

 You don’t get:
– A product that fits your customer’s need

– To see change as a business opportunity

– Continuous improvement

– Better economics by deferring decisions

– Better economics by limiting WIP

– Light weight change management procedures

– Transparency, because it is simply too hurtful



PERCEPTION OF TIME



THE RIGHT PERCEPTION OF 

TIME WITH THE RIGHT TOOLS



Problems with SCRUM

 We always have small deadlines that we 

strive to make

 Just after a sprint, it’s easy to dismiss 

lacking code reviews, clean-ups, etc.

 “Clean Code” is a luxury we can only 

afford when it doesn’t get in the way of 

the sprint estimates.



Our twisted perception of time

 We don’t do pair programming, because 

it takes too long to discuss what to code

 We don’t do TDD because we then 

spend time on the test code

 We don’t learn new tools because they 

take time to learn

 We don’t chat with the customer 

because they might tell us we’re wrong



TRANSPARENCY… IS THAT 

SOME KIND OF EXOTIC 

ANIMAL?



Transparency is good

 Transparency surfaces problems quicker 

while they are still fixable

 Transparency makes alignment much 

easier because of a shared overview

 Transparency makes people work closer 

together 



But Transparency also means

 You cannot hide your mistakes

 You have to accept reality

 You no longer get to believe in magic or 

wishful thinking

 You have to trust each other to focus on 

what is important for the project



Pair Programming (done right)

 Code review is built-in

 You’re more likely to refactor along the 

way, and push each other to perform 

your best

 Small misconceptions are found faster

 You don’t get stuck or run off on a 

tangent for days

 The team is not completely disfunctional 

the day the LDAP expert is away



Pair Programming (done wrong)

 Experienced developers can get 

frustrated working with complete novices

 Different meeting times on the team 

minimizes potential pair-up time

 An odd number of team members...?

 Off-days, meetings, small interruptions...

 Lack of small breaks during the day can 

drain all of your energy



RIPPING YOUR HEART OUT



Personal issues

 For many, pair programming is too 

personal

 You suddenly have to explain what you 

do and why

 You cannot hide bad habits



But... Hey?

That’s how we get better!



TRUST… ISN’T THAT WISHFUL 

HIPPIE THINKING?



When you trust

 You can decentralize authority

 You can focus on the shared goal

 You don’t need wasteful control 

procedures

 You can collaborate instead of negotiate



Yeah, I Like the Idea of Trust But:

 This particular Customer, Client, 

Supplier, Developer will turn it against 

me

 This fixed price contract is strangling our 

economy

 I am not sure they would understand

 What if the project fails?



FAILURE IS NOT AN OPTION!



What Are We Afraid of?

 What happened to fail early?

 What happened to failure as learning 
opportunity?

 Will you be distrusted and ridiculed 
because you admit to not being perfect?

 Is it really a failure if you still have time to 
fix what went wrong?

 Do people really expect you to be a 
fortune teller?



THE POWER OF HABITS



About habits

 Too many of us keep the habits all the 

way from university/school

 Why don’t we change them?

 Do we feel a constant pressure forcing 

us to ”just” complete the next task before 

we pull ourselves together?

 How, then, are we going to move our 

profession forward?



But we have to change habits!

 If we cannot do it ourselves, we need 

help!

 Where’s the SCRUM master?

 How about ”coding dojos” once in a 

while?

 How about helping each others learning 

new tools and using each others across 

teams?



So sometimes we don’t always

1. Satisfy the Customer through Working Software

2. Deliver Early and Often

3. Create and Embrace Change

4. Focus on Quality

5. Create Transparency through Visualization

6. Endorse Sustainable Pace

7. Bring People Closer Together

8. Trust in People and Decentralize Authority

9. Improve Continuously



Could it be because deep down?

 We are afraid to Fail

 We are afraid to Trust

 We are afraid of Transparency

 We Measure the wrong things


