
Including jQuery is not an answer!
- Design, techniques and tools for larger JS apps

Trifork A/S, Headquarters
Margrethepladsen 4,
DK-8000 Århus C,
Denmark
info@trifork.com
http://www.trifork.com

Karl Krukow
Trifork Geek Night
March 15st, 2011,
Trifork, Aarhus

mailto:info@trifork.com
http://www.trifork.com/

2

Does your JavaScript look like this?

What is the question, then?

3

4

What about your server side code?

5

6

Non-functional requirements for the
Server-side

 Maintainability and extensibility

 Technical quality
– e.g. modularity, reuse, separation of concerns

– automated testing

– continuous integration/deployment

– Tool support (static analysis, compilers, IDEs)

 Productivity

 Performant

 Appropriate architecture and design

 …

7

Why so different?

 “Front-end” programming isn't 'real'
programming?

 JavaScript isn't a 'real' language?
– Browsers are impossible...

 That's just the way it is...

The problem is only going to get worse!
● JS apps will get larger and more complex.
● More logic and computation on the client.
● HTML5 and mobile web will require more programming.
● We have to test and maintain these apps.
● We will have harder requirements for performance
 (e.g. mobile).

8

9

NO

Including jQuery is NOT an answer to these
problems.

(Neither is any other js library)

You need to do more.

10

Improving quality on client side code

 The goal of this talk is to motivate and help you
improve the technical quality of your JavaScript
projects

 Three main points. To improve non-functional
quality:
– you need to understand the language and host APIs.

– you need design, structure and file-organization as
much (or even more) for JavaScript as you do in other
languages, e.g. Java

– there are tools and the can help with quality,
productivity, performance.

11

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design pattern
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

12

Quick Demo of sample project

13

JavaScript and Larger Programs

JavaScript is easy

 How to program JavaScript:
– Open web browser and go to Google.

– Type in what you need (e.g., datepicker JavaScript).

– You don't have to even read the article, just copy-paste the
result into your page.

– Customize it: don't worry its just like programming Java..

– Ship it...

 Well... Does this lead to maintainable, consistent,
understandable, performant code? (answer is “no”, just
in case your are wondering) :)

Pop-quiz

How well do you know JavaScript?

Q1: what does this code do?
<div id="mydiv">mydiv</div>
myspan
<p id="myp">myp</p>

<script>
var arr = ['mydiv', 'myspan', 'myp'];
for (var i=0,N=arr.length;i<N;i++) {
 var id = arr[i];
 var e = document.getElementById(id);
 e.onclick = function() {
 e.style.display = 'none';
 };
}
</script>

Q2: what does this code do?
var i = 42;

function resetOrReturn(arr) {
 if (arr != null) {
 var sum = 0;
 for (var i=0;i<arr.length;i++){
 sum += arr[i];
 }
 return sum;
 } else {

i = 0;
return i;

 }
}

resetOrReturn(null);

alert(i);

public class ResetOrReturn {
 static int i = 42;

 static int resetOrReturn(int[] arr) {
 if (arr != null) {
 int sum=0;
 for (int i=0;i<arr.length;i++) {

 sum += arr[i];
 }
 return sum;

 } else {
 i = 0;
 return i;
 }
 }

 public static void main(String[] args) {

ResetOrReturn.resetOrReturn(null);
System.out.println(ResetOrReturn.i);

 }
}

Q3: What does this code do?

Object.create = (function() {
 function F() {};
 return function(p) {
 F.prototype = p;
 return new F();
 };
})();

Q4: What is jQuery doing here?

jQuery.support = {};
//...
var div = document.createElement("div");
div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

var fragment = document.createDocumentFragment();
fragment.appendChild(div.firstChild);

jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true)
.lastChild.checked;

jQuery(function() {
var div = document.createElement("div");
div.style.width = div.style.paddingLeft = "1px";

document.body.appendChild(div);
jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
document.body.removeChild(div).style.display = 'none';

div = null;
});

 This is actual code in jQuery-1.4.2, and is run
every time that script is loaded...

Key Properties

 Delivered as source code, as opposed to executables
– Originally intended to be embedded in web pages

 Hosted. Host can expose various objects and methods.

 Dynamically typed

 Dynamic Objects
– General containers.

 Prototypal inheritance
– Objects inherit from objects (no classes) (Inspired by Self)

 Functions are first-class citizens, Closures
– (inspired by Scheme)

 Linkage of modules via global variables

21

JavaScript as language

 Bad news: JavaScript seems poorly suited for
writing large and complex applications.
– Lacks language support for

• modules/namespacing/packages

• Encapsulation

• Every thing is changeable

• No static information like types or classes

• Uses global namespace and has strange scope rules

 Good news:
– Learn the language well and see ...

– the features it does have are powerful enough that we
can overcome many difficulties.

22

Explaining Closures!

 Modules in JavaScript are possibe via closures.

 Closures and Scope are probably the most
misunderstood parts of JavaScript

 Here is a quick explanation...

23

Local and Global variables

 The only way of creating a new scope in
JavaScript is using a function.
– Hence (almost) all variables not defined inside a

function are globally visible and changeable.

– Even for scripts loaded from different sources.

var count = 42;
evens = [];

for (var i=0;i<count;i++) {
var j = 2*i;
evens[i] = j;

}

alert(j);

var count = 42;
evens = [];
function initEvens() {

for (var i=0;i<count;i++) {
var j = 2*i;
evens[i] = j;

}
}
initEvens();
alert(j);

Programs and the global object

 A JavaScript program consists of a list of
statements and function declarations.

 Execution of a statement takes place in an
execution context, containing e.g. a scope chain:
– a list of objects (each containing properties)

– defines what variables are available to statements

 There is an object, 'the global object,' that is at the
end of the scope chain.
– the properties of the global object are always

available as 'variables' to statements
• (unless they are shadowed by other scope chain

objects)

Variables, properties and scope.

 Variables and properties are quite similar.
– A global variable is just a property of the global object.

– A local variable is just a property in another type of
object in the scope-chain.

 When looking up the value of a variable, it starts
by looking at the first object in the chain, then
proceeds until found.

 Each function is associated with a scope-chain.
– When the function is called a new object is created

and added to the end of the scope chain, forming a
new chain – containing local vars, params and decls.

– This new chain is used as scope chain when executing
statements in function body.

Example.

1 var create_person = function(name){

| 3 return {
 getName: function() {
| | 5 return name;

}
 };

};

2 var p = create_person("Crockford");

4 alert(p.getName());

Closures

 Functions have access to outer function's lexical
environment (local vars, params, decls)
– If nested function “escapes” then it still has access

(we'll say that it “encloses” it's environment)
• escape: using return or by assignment to an outer variable

or object property

 A function together with such an
“environment” is called a closure.

The module pattern

 Functions can be used for information hiding
– Private and public state

 The following pattern is called the Module pattern

 (First published by Richard Cornford)

 Style guide: parenthesize function!

var adam = (function(){
 var name = "Adam",
 sins = [];
 return {
 getName: function() {return name;},
 addSin: function(sin) {
 sins[sins.length] = sin;
 }
 };
})(); THIS IS IMPORTANT!

29

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

Namespaces

Problems of global variables

 Unless the script author does something any
reasonably sized program will contain a large set
of global variables
– Typically scattered over many files with often with no

particular structure

– Hard to get an overview of which variables exist

– Hard to quickly find where a variables is defined (or
redefined!!)

– No notion of public and private functions

 Much greater risk of collision (particularly in
mash-up or portal environments)

Solutions

 Module pattern

– Those 'public' vars are still all just in the global
namespace.

 To avoid collision, “long” or “unique” names could
be used “myappnameStoreForEmployees”.

 Also, a technique known as “namespacing” is
popular
– Since objects are just general containers they can be-

used for organizing the application itself.

var publicVar = (function(){
 var x, y ,z;//locals
 //...
})();

Example: Namespacing
App = {
 Store: {
 init: function(){
 //...
 }
 },
 UI: {
 init: function(){
 //...
 }
 },
 init: function(){

 App.Store.init();
 App.UI.init();
 }
};

 A single global name

 A natural structure for the application
– Multiple files?

DSL for “namespaces”

 Suppose now you define a module in a separate
file which depends on the existence of a number
of other modules
– Each module living in a “namespace” object

ns("App.Init");//the module defined in this script

using(App.Init,
 App.Store,App.UI) //module dependencies

.run(function(Init,Store,UI) {
//Init is App.Init, Store is App.Store, ...

var privateVar;//module private var

Init.init = function() {//public API
//...

};
//...

});

Naming spaces and file-organization

 One approach to file-organization is to let the
directory structures match your “namespace”
organization and to put modules in individual files
– For example: com.trifork.project.module1

 Easy to find a module on the file system

 Each file defines a module with a seperate
concern.

JavaScript Application Design

(or Yet another Model-View-Controller design)

What now?

 We can now split our program into multiple
modules, each module being located in a
separate file.
– Using the module pattern (or namespace/using),

each module has a public API and potentially private
state.

 This is already a big step forward in managing
complexity, and is sufficient for many, if not all,
programs.

 However,
– which modules do you want? Is there a common

pattern, or is it “each project invents a new way”?

– how should you name and organize modules and files?

Triangle to the rescue again...

View Model

Controller

Events/Observer pattern enables loose coupling

Events

Model

 The model
– Defines domain types with data and methods

– Provides a central place for accessing application
state regarding the domain

– Broadcasts events when application state changes

– Provides methods for querying and updating state

 In our example application, a feed reader, the
model consists of
– com.trifork.exteria.Feed and com.trifork.exteria.Post
– A singleton object, com.trifork.exteria.Model

• wrapping application state: a number of feeds, each
containing a number of posts.

The view

 The view
– Comprises all the objects managing UI in the

application.

– Often forms a hiearchy/tree of components.

– Converts user inputs/events to events/actions that
make sense at the domain/application level.

– UI Events can bubble up component tree

 In our example,
– View consists of several UI components, e.g. a “tree”

on the left containing the subscribed feeds and the
main panel on the right for reading feed and posts.

– An object View to which all view events bubble.

– View components form a tree with the View object at
root

The controller
 The controller

– reacts to events originating from the model objects or
view objects.

– Updates model objects appropriately on events like
user actions

– Updates view objects in reaction to model events to
reflect model state

 In our example,
– Controller “connects” the Model object and the View

object (since all relevant events bubble to these).

– e.g., when the UI event 'user.newfeed” happens, the
model is updated, adding the new feed.

– e.g., when model event 'feed.added' occurs the view is
notified and shows the feed.

Other points

 Events carry a 'payload',
– for example our event 'user.newfeed' carries a

com.trifork.exteria.Feed object which is the new feed.

 View objects can react to view events too,
– for example, our view event 'user.selectfeed' both

results in the controller updating the model with the
currently selected feed

– AND the view reacts by showing the feed in the main
panel.

Example: Application Design -- Exteria

44

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

45

Tools that can help

(yes there really are some!)

46

JavaScript IDEs

 Traditionally JavaScript is edited using simple text
editors, or even HTML editors.

 The nature of JavaScript (dynamics, no static
types, eval, etc) makes it hard to have “smart”
tooling like Eclipse or IDEA
– However – watch this space

 I use Spket which comes with an understanding
of JavaScript and knowledge of several popular
JS libraries (jQuery, ExtJS, YUI..)
– Not near perfect but better than a simple text editor

47

Analysis

 JSLint is a popular tool that parses your
JavaScript and points out errors.

 I run it with every build and it regularly catches
errors at “build” time.
– A good example is the “extra comma” problem that

IE6 handles miserably {a: 42, b: 42, c: 42 , }

– Also catches some scope problems.

 There is much research going into static analysis
of JavaScript, for example keep an eye on
– TAJS: Type analysis for JavaScript

• Simon Holm Jensen and Anders Møller and Peter
Thiemann

– http://www.brics.dk/TAJS/

http://www.brics.dk/TAJS/

48

Build and deployment
 Splitting your application up in to smaller simpler

modules and having each module in a file means
MANY files
– Pro managing complexity in large projects,

– Con: not a good way of distributing JavaScript

 The way you organize files at development time
– Is not the way you should organize files at runtime.

 Of course, use concatenation, JS-to-JS compilers,
gzip compression and HTTP caching.
– Tooling can help e.g.: YUICompressor, Google Closure

Compiler, YSlow, Page Speed

49

Example

IDE, Static checking
Build, deployment

for Exteria

50

Testing

 On the server side there has been a movement
towards automated testing, both unit and
acceptance testing.
– Techniques like TDD are gaining momentum

 This is often combined with a continuous
build/test/integration environment for
continuous feedback.

 What about JavaScript?
– How many of you do some form of automated

testing?

– How many do unit testing?

– Do you use techniques like “mock” objects?

51

JavaScript and unit testing

 There are several libraries for unit testing in
JavaScript, but it is actually not so easy to find
one that easily allows
– Automated execution (i.e. from the command line)

– Automated Reporting test outcome in a machine
readable form

– IDE integration

– Code coverage

 JS-Testdriver
http://code.google.com/p/js-test-driver/
– Again not perfect but quite good

http://code.google.com/p/js-test-driver/

52

Managing Dependencies

 Unit test often require replacing object
dependencies with “mock” objects.

 Sinon JS
– http://sinonjs.org/

– Standalone test spies, stubs and mocks for
JavaScript. No dependencies, works with any unit
testing framework.

 Support for js-testdriver

 Support for “fake/mock” Ajax requests

 …

http://sinonjs.org/

53

Acceptance/Functional tests

 De-facto standard: Selenium

 Automated

 Easy to integrate with CI servers like hudson

 Selenium 2.0 uses webdriver which enables even
more detailed and fine grain automation of
browsers than Selenium 1.x.

 API bindings for many languages: Java, C#,
Ruby,...

 There is also Tellurium
– http://code.google.com/p/aost/

http://code.google.com/p/aost/

54

Demo:
Unit testing

Functional testing
Continuous integration

55

Summary

 Learning JavaScript and DOM apis is useful for
debugging, performance, and using the language
effectively
– Learning a library is just a beginning

 We can do design on the client too :)
– MVC is often useful

– Libraries can help, e.g. JavaScript MVC and
backbone.js for jQuery, ExtJS

– Custom events help reduce coupling

 Using appropriate tools can help
– raise our produtivity,

– Web app performance and analysis

– Quality assurance

56

References
 Douglas Crockford on JavaScript

– JavaScript & Advanced JavaScript (and more)
http://developer.yahoo.com/yui/theater/

– JavaScript: The Good Parts

 Namespace/Using on my blog
http://blog.higher-order.net/2008/02/18/designing-clientserver-web-applications/

 jQuery number joke
– http://www.doxdesk.com/updates/2009.html

 JavaScript MVC for jQuery
– http://www.javascriptmvc.com/

– Also: http://documentcloud.github.com/backbone/

http://developer.yahoo.com/yui/theater/
http://blog.higher-order.net/2008/02/18/designing-clientserver-web-applications/
http://www.doxdesk.com/updates/2009.html
http://www.javascriptmvc.com/
http://documentcloud.github.com/backbone/

57

More references

 JS-Testdriver
– http://code.google.com/p/js-test-driver/

 Spket IDE / Eclipse plugin: http://spket.com/

 Selenium: http://seleniumhq.org/

 http://www.infoq.com/articles/tellurium_intro

 SinonJS: http://sinonjs.org/

 Example Rails project (Exteria)

http://blog.higher-order.net/files/GeekNightExampleExported.zip

http://code.google.com/p/js-test-driver/
http://spket.com/
http://seleniumhq.org/
http://www.infoq.com/articles/tellurium_intro
http://sinonjs.org/
http://blog.higher-order.net/files/GeekNightExampleExported.zip

58

Additional references

 Performance tooling
– Google Speed Tracer

– DynaTrace Ajax Edition

– YSlow

– PageSpeed

 Google Closure Compiler

 YUI Compressor

 JSLint

 Nginx

 Steve Souders http://stevesouders.com/

http://stevesouders.com/

59

Rails plugins

gem 'rails', '3.0.3'

gem 'jammit'

gem 'jslint_on_rails'

gem 'selenium-webdriver'

gem 'selenium-client'

gem 'test-unit', "2.0"

gem 'ci_reporter'

gem 'sqlite3-ruby', :require => 'sqlite3'

gem "mongrel", ">= 1.2.0.pre2"

 And Ruby 1.9.2

 There are equivalent tools for Java and
probably .NET :)

	Including jQuery is not an answer! (Design, techniques and tools for larger JS apps)
	Question
	A Mess!
	Server side?
	Server side structure
	Non-functional requirements for the Server-side
	Why?
	jQuery joke
	NO! Including jQuery is not an answer.
	Goal of this talk
	Agenda
	Intro to sample project
	Part i
	JavaScript is easy
	Pop-quiz
	Q1: What does this code do?
	Q2: What this Java and JavaScript code do?
	Q3: What does this code do?
	Q4: What is jQuery doing here?
	Key properties
	JavaScript as a programming language
	Explaining closures
	Scope
	Programs and the global object
	Variables or properties?
	Closure - example
	Closure
	The module pattern
	Roadmap
	Namespaces
	Problems with global variables
	Solutions
	Example: Namespacing
	A small DSL for "namespaces"
	Naming spaces and file organization
	Application design
	What now?
	MVC
	Model
	The view
	Controller
	Other points
	Example: Exteria
	Roadmap ii
	Tools
	IDEs
	Static analysis
	Build and deployment
	Example: build & deployment
	Testing
	JavaScript and Unit-testing
	Managing dependencies
	Acceptance/Functional
	Demo: testing
	Summary
	Some references
	More refs
	More more ref
	Rails plugins

