
Including jQuery is not an answer!
- Design, techniques and tools for larger JS apps

Trifork A/S, Headquarters
Margrethepladsen 4,
DK-8000 Århus C,
Denmark
info@trifork.com
http://www.trifork.com

Karl Krukow
Trifork Geek Night
March 15st, 2011,
Trifork, Aarhus

mailto:info@trifork.com
http://www.trifork.com/

2

Does your JavaScript look like this?

What is the question, then?

3

4

What about your server side code?

5

6

Non-functional requirements for the
Server-side

 Maintainability and extensibility

 Technical quality
– e.g. modularity, reuse, separation of concerns

– automated testing

– continuous integration/deployment

– Tool support (static analysis, compilers, IDEs)

 Productivity

 Performant

 Appropriate architecture and design

 …

7

Why so different?

 “Front-end” programming isn't 'real'
programming?

 JavaScript isn't a 'real' language?
– Browsers are impossible...

 That's just the way it is...

The problem is only going to get worse!
● JS apps will get larger and more complex.
● More logic and computation on the client.
● HTML5 and mobile web will require more programming.
● We have to test and maintain these apps.
● We will have harder requirements for performance
 (e.g. mobile).

8

9

NO

Including jQuery is NOT an answer to these
problems.

(Neither is any other js library)

You need to do more.

10

Improving quality on client side code

 The goal of this talk is to motivate and help you
improve the technical quality of your JavaScript
projects

 Three main points. To improve non-functional
quality:
– you need to understand the language and host APIs.

– you need design, structure and file-organization as
much (or even more) for JavaScript as you do in other
languages, e.g. Java

– there are tools and the can help with quality,
productivity, performance.

11

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design pattern
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

12

Quick Demo of sample project

13

JavaScript and Larger Programs

JavaScript is easy

 How to program JavaScript:
– Open web browser and go to Google.

– Type in what you need (e.g., datepicker JavaScript).

– You don't have to even read the article, just copy-paste the
result into your page.

– Customize it: don't worry its just like programming Java..

– Ship it...

 Well... Does this lead to maintainable, consistent,
understandable, performant code? (answer is “no”, just
in case your are wondering) :)

Pop-quiz

How well do you know JavaScript?

Q1: what does this code do?
<div id="mydiv">mydiv</div>
myspan
<p id="myp">myp</p>

<script>
var arr = ['mydiv', 'myspan', 'myp'];
for (var i=0,N=arr.length;i<N;i++) {
 var id = arr[i];
 var e = document.getElementById(id);
 e.onclick = function() {
 e.style.display = 'none';
 };
}
</script>

Q2: what does this code do?
var i = 42;

function resetOrReturn(arr) {
 if (arr != null) {
 var sum = 0;
 for (var i=0;i<arr.length;i++){
 sum += arr[i];
 }
 return sum;
 } else {

i = 0;
return i;

 }
}

resetOrReturn(null);

alert(i);

public class ResetOrReturn {
 static int i = 42;

 static int resetOrReturn(int[] arr) {
 if (arr != null) {
 int sum=0;
 for (int i=0;i<arr.length;i++) {

 sum += arr[i];
 }
 return sum;

 } else {
 i = 0;
 return i;
 }
 }

 public static void main(String[] args) {

ResetOrReturn.resetOrReturn(null);
System.out.println(ResetOrReturn.i);

 }
}

Q3: What does this code do?

Object.create = (function() {
 function F() {};
 return function(p) {
 F.prototype = p;
 return new F();
 };
})();

Q4: What is jQuery doing here?

jQuery.support = {};
//...
var div = document.createElement("div");
div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

var fragment = document.createDocumentFragment();
fragment.appendChild(div.firstChild);

jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true)
.lastChild.checked;

jQuery(function() {
var div = document.createElement("div");
div.style.width = div.style.paddingLeft = "1px";

document.body.appendChild(div);
jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
document.body.removeChild(div).style.display = 'none';

div = null;
});

 This is actual code in jQuery-1.4.2, and is run
every time that script is loaded...

Key Properties

 Delivered as source code, as opposed to executables
– Originally intended to be embedded in web pages

 Hosted. Host can expose various objects and methods.

 Dynamically typed

 Dynamic Objects
– General containers.

 Prototypal inheritance
– Objects inherit from objects (no classes) (Inspired by Self)

 Functions are first-class citizens, Closures
– (inspired by Scheme)

 Linkage of modules via global variables

21

JavaScript as language

 Bad news: JavaScript seems poorly suited for
writing large and complex applications.
– Lacks language support for

• modules/namespacing/packages

• Encapsulation

• Every thing is changeable

• No static information like types or classes

• Uses global namespace and has strange scope rules

 Good news:
– Learn the language well and see ...

– the features it does have are powerful enough that we
can overcome many difficulties.

22

Explaining Closures!

 Modules in JavaScript are possibe via closures.

 Closures and Scope are probably the most
misunderstood parts of JavaScript

 Here is a quick explanation...

23

Local and Global variables

 The only way of creating a new scope in
JavaScript is using a function.
– Hence (almost) all variables not defined inside a

function are globally visible and changeable.

– Even for scripts loaded from different sources.

var count = 42;
evens = [];

for (var i=0;i<count;i++) {
var j = 2*i;
evens[i] = j;

}

alert(j);

var count = 42;
evens = [];
function initEvens() {

for (var i=0;i<count;i++) {
var j = 2*i;
evens[i] = j;

}
}
initEvens();
alert(j);

Programs and the global object

 A JavaScript program consists of a list of
statements and function declarations.

 Execution of a statement takes place in an
execution context, containing e.g. a scope chain:
– a list of objects (each containing properties)

– defines what variables are available to statements

 There is an object, 'the global object,' that is at the
end of the scope chain.
– the properties of the global object are always

available as 'variables' to statements
• (unless they are shadowed by other scope chain

objects)

Variables, properties and scope.

 Variables and properties are quite similar.
– A global variable is just a property of the global object.

– A local variable is just a property in another type of
object in the scope-chain.

 When looking up the value of a variable, it starts
by looking at the first object in the chain, then
proceeds until found.

 Each function is associated with a scope-chain.
– When the function is called a new object is created

and added to the end of the scope chain, forming a
new chain – containing local vars, params and decls.

– This new chain is used as scope chain when executing
statements in function body.

Example.

1 var create_person = function(name){

| 3 return {
 getName: function() {
| | 5 return name;

}
 };

};

2 var p = create_person("Crockford");

4 alert(p.getName());

Closures

 Functions have access to outer function's lexical
environment (local vars, params, decls)
– If nested function “escapes” then it still has access

(we'll say that it “encloses” it's environment)
• escape: using return or by assignment to an outer variable

or object property

 A function together with such an
“environment” is called a closure.

The module pattern

 Functions can be used for information hiding
– Private and public state

 The following pattern is called the Module pattern

 (First published by Richard Cornford)

 Style guide: parenthesize function!

var adam = (function(){
 var name = "Adam",
 sins = [];
 return {
 getName: function() {return name;},
 addSin: function(sin) {
 sins[sins.length] = sin;
 }
 };
})(); THIS IS IMPORTANT!

29

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

Namespaces

Problems of global variables

 Unless the script author does something any
reasonably sized program will contain a large set
of global variables
– Typically scattered over many files with often with no

particular structure

– Hard to get an overview of which variables exist

– Hard to quickly find where a variables is defined (or
redefined!!)

– No notion of public and private functions

 Much greater risk of collision (particularly in
mash-up or portal environments)

Solutions

 Module pattern

– Those 'public' vars are still all just in the global
namespace.

 To avoid collision, “long” or “unique” names could
be used “myappnameStoreForEmployees”.

 Also, a technique known as “namespacing” is
popular
– Since objects are just general containers they can be-

used for organizing the application itself.

var publicVar = (function(){
 var x, y ,z;//locals
 //...
})();

Example: Namespacing
App = {
 Store: {
 init: function(){
 //...
 }
 },
 UI: {
 init: function(){
 //...
 }
 },
 init: function(){

 App.Store.init();
 App.UI.init();
 }
};

 A single global name

 A natural structure for the application
– Multiple files?

DSL for “namespaces”

 Suppose now you define a module in a separate
file which depends on the existence of a number
of other modules
– Each module living in a “namespace” object

ns("App.Init");//the module defined in this script

using(App.Init,
 App.Store,App.UI) //module dependencies

.run(function(Init,Store,UI) {
//Init is App.Init, Store is App.Store, ...

var privateVar;//module private var

Init.init = function() {//public API
//...

};
//...

});

Naming spaces and file-organization

 One approach to file-organization is to let the
directory structures match your “namespace”
organization and to put modules in individual files
– For example: com.trifork.project.module1

 Easy to find a module on the file system

 Each file defines a module with a seperate
concern.

JavaScript Application Design

(or Yet another Model-View-Controller design)

What now?

 We can now split our program into multiple
modules, each module being located in a
separate file.
– Using the module pattern (or namespace/using),

each module has a public API and potentially private
state.

 This is already a big step forward in managing
complexity, and is sufficient for many, if not all,
programs.

 However,
– which modules do you want? Is there a common

pattern, or is it “each project invents a new way”?

– how should you name and organize modules and files?

Triangle to the rescue again...

View Model

Controller

Events/Observer pattern enables loose coupling

Events

Model

 The model
– Defines domain types with data and methods

– Provides a central place for accessing application
state regarding the domain

– Broadcasts events when application state changes

– Provides methods for querying and updating state

 In our example application, a feed reader, the
model consists of
– com.trifork.exteria.Feed and com.trifork.exteria.Post
– A singleton object, com.trifork.exteria.Model

• wrapping application state: a number of feeds, each
containing a number of posts.

The view

 The view
– Comprises all the objects managing UI in the

application.

– Often forms a hiearchy/tree of components.

– Converts user inputs/events to events/actions that
make sense at the domain/application level.

– UI Events can bubble up component tree

 In our example,
– View consists of several UI components, e.g. a “tree”

on the left containing the subscribed feeds and the
main panel on the right for reading feed and posts.

– An object View to which all view events bubble.

– View components form a tree with the View object at
root

The controller
 The controller

– reacts to events originating from the model objects or
view objects.

– Updates model objects appropriately on events like
user actions

– Updates view objects in reaction to model events to
reflect model state

 In our example,
– Controller “connects” the Model object and the View

object (since all relevant events bubble to these).

– e.g., when the UI event 'user.newfeed” happens, the
model is updated, adding the new feed.

– e.g., when model event 'feed.added' occurs the view is
notified and shows the feed.

Other points

 Events carry a 'payload',
– for example our event 'user.newfeed' carries a

com.trifork.exteria.Feed object which is the new feed.

 View objects can react to view events too,
– for example, our view event 'user.selectfeed' both

results in the controller updating the model with the
currently selected feed

– AND the view reacts by showing the feed in the main
panel.

Example: Application Design -- Exteria

44

Agenda
 JavaScript and larger programs

– Problems for larger programs

– Scope and closures

– How closures can help in large programs

 JavaScript Application Design
– Namespacing & File organization

– A Model-View-Controller-Event design
• Custom events

– Example illustrated using Ext JS

 Tools that can help
– IDE support, build and deployment

– Unit testing

– Acceptance testing/functional testing

– Continous integration

45

Tools that can help

(yes there really are some!)

46

JavaScript IDEs

 Traditionally JavaScript is edited using simple text
editors, or even HTML editors.

 The nature of JavaScript (dynamics, no static
types, eval, etc) makes it hard to have “smart”
tooling like Eclipse or IDEA
– However – watch this space

 I use Spket which comes with an understanding
of JavaScript and knowledge of several popular
JS libraries (jQuery, ExtJS, YUI..)
– Not near perfect but better than a simple text editor

47

Analysis

 JSLint is a popular tool that parses your
JavaScript and points out errors.

 I run it with every build and it regularly catches
errors at “build” time.
– A good example is the “extra comma” problem that

IE6 handles miserably {a: 42, b: 42, c: 42 , }

– Also catches some scope problems.

 There is much research going into static analysis
of JavaScript, for example keep an eye on
– TAJS: Type analysis for JavaScript

• Simon Holm Jensen and Anders Møller and Peter
Thiemann

– http://www.brics.dk/TAJS/

http://www.brics.dk/TAJS/

48

Build and deployment
 Splitting your application up in to smaller simpler

modules and having each module in a file means
MANY files
– Pro managing complexity in large projects,

– Con: not a good way of distributing JavaScript

 The way you organize files at development time
– Is not the way you should organize files at runtime.

 Of course, use concatenation, JS-to-JS compilers,
gzip compression and HTTP caching.
– Tooling can help e.g.: YUICompressor, Google Closure

Compiler, YSlow, Page Speed

49

Example

IDE, Static checking
Build, deployment

for Exteria

50

Testing

 On the server side there has been a movement
towards automated testing, both unit and
acceptance testing.
– Techniques like TDD are gaining momentum

 This is often combined with a continuous
build/test/integration environment for
continuous feedback.

 What about JavaScript?
– How many of you do some form of automated

testing?

– How many do unit testing?

– Do you use techniques like “mock” objects?

51

JavaScript and unit testing

 There are several libraries for unit testing in
JavaScript, but it is actually not so easy to find
one that easily allows
– Automated execution (i.e. from the command line)

– Automated Reporting test outcome in a machine
readable form

– IDE integration

– Code coverage

 JS-Testdriver
http://code.google.com/p/js-test-driver/
– Again not perfect but quite good

http://code.google.com/p/js-test-driver/

52

Managing Dependencies

 Unit test often require replacing object
dependencies with “mock” objects.

 Sinon JS
– http://sinonjs.org/

– Standalone test spies, stubs and mocks for
JavaScript. No dependencies, works with any unit
testing framework.

 Support for js-testdriver

 Support for “fake/mock” Ajax requests

 …

http://sinonjs.org/

53

Acceptance/Functional tests

 De-facto standard: Selenium

 Automated

 Easy to integrate with CI servers like hudson

 Selenium 2.0 uses webdriver which enables even
more detailed and fine grain automation of
browsers than Selenium 1.x.

 API bindings for many languages: Java, C#,
Ruby,...

 There is also Tellurium
– http://code.google.com/p/aost/

http://code.google.com/p/aost/

54

Demo:
Unit testing

Functional testing
Continuous integration

55

Summary

 Learning JavaScript and DOM apis is useful for
debugging, performance, and using the language
effectively
– Learning a library is just a beginning

 We can do design on the client too :)
– MVC is often useful

– Libraries can help, e.g. JavaScript MVC and
backbone.js for jQuery, ExtJS

– Custom events help reduce coupling

 Using appropriate tools can help
– raise our produtivity,

– Web app performance and analysis

– Quality assurance

56

References
 Douglas Crockford on JavaScript

– JavaScript & Advanced JavaScript (and more)
http://developer.yahoo.com/yui/theater/

– JavaScript: The Good Parts

 Namespace/Using on my blog
http://blog.higher-order.net/2008/02/18/designing-clientserver-web-applications/

 jQuery number joke
– http://www.doxdesk.com/updates/2009.html

 JavaScript MVC for jQuery
– http://www.javascriptmvc.com/

– Also: http://documentcloud.github.com/backbone/

http://developer.yahoo.com/yui/theater/
http://blog.higher-order.net/2008/02/18/designing-clientserver-web-applications/
http://www.doxdesk.com/updates/2009.html
http://www.javascriptmvc.com/
http://documentcloud.github.com/backbone/

57

More references

 JS-Testdriver
– http://code.google.com/p/js-test-driver/

 Spket IDE / Eclipse plugin: http://spket.com/

 Selenium: http://seleniumhq.org/

 http://www.infoq.com/articles/tellurium_intro

 SinonJS: http://sinonjs.org/

 Example Rails project (Exteria)

http://blog.higher-order.net/files/GeekNightExampleExported.zip

http://code.google.com/p/js-test-driver/
http://spket.com/
http://seleniumhq.org/
http://www.infoq.com/articles/tellurium_intro
http://sinonjs.org/
http://blog.higher-order.net/files/GeekNightExampleExported.zip

58

Additional references

 Performance tooling
– Google Speed Tracer

– DynaTrace Ajax Edition

– YSlow

– PageSpeed

 Google Closure Compiler

 YUI Compressor

 JSLint

 Nginx

 Steve Souders http://stevesouders.com/

http://stevesouders.com/

59

Rails plugins

gem 'rails', '3.0.3'

gem 'jammit'

gem 'jslint_on_rails'

gem 'selenium-webdriver'

gem 'selenium-client'

gem 'test-unit', "2.0"

gem 'ci_reporter'

gem 'sqlite3-ruby', :require => 'sqlite3'

gem "mongrel", ">= 1.2.0.pre2"

 And Ruby 1.9.2

 There are equivalent tools for Java and
probably .NET :)

	Including jQuery is not an answer! (Design, techniques and tools for larger JS apps)
	Question
	A Mess!
	Server side?
	Server side structure
	Non-functional requirements for the Server-side
	Why?
	jQuery joke
	NO! Including jQuery is not an answer.
	Goal of this talk
	Agenda
	Intro to sample project
	Part i
	JavaScript is easy
	Pop-quiz
	Q1: What does this code do?
	Q2: What this Java and JavaScript code do?
	Q3: What does this code do?
	Q4: What is jQuery doing here?
	Key properties
	JavaScript as a programming language
	Explaining closures
	Scope
	Programs and the global object
	Variables or properties?
	Closure - example
	Closure
	The module pattern
	Roadmap
	Namespaces
	Problems with global variables
	Solutions
	Example: Namespacing
	A small DSL for "namespaces"
	Naming spaces and file organization
	Application design
	What now?
	MVC
	Model
	The view
	Controller
	Other points
	Example: Exteria
	Roadmap ii
	Tools
	IDEs
	Static analysis
	Build and deployment
	Example: build & deployment
	Testing
	JavaScript and Unit-testing
	Managing dependencies
	Acceptance/Functional
	Demo: testing
	Summary
	Some references
	More refs
	More more ref
	Rails plugins

