
Code Analysis

Reflect on Your Code

Abstract

Most of the time developers produce code, but they rarely manage to

adequately review their code to a high level of quality.

I aim to introduce simple analysis insights (such as code metrics, complexity,

etc...) and present some crucial tools which really pay-off for medium-large

scale code-bases.

Simple concepts such as code-reuse and re-factoring, although much

discussed in the community, are still not thoroughly understood/employed by

developers.

This is especially obvious when analyzing common open-source projects

(.NET).

I'll illustrate how a very rigorous process of code review and continuous

refactoring have a huge impact.

Disclaimer/Delimitation

• The author does not have significant

experience to provide personal judgements

over specific matter

• Introductory, no in-depth worked example

Plan

● Introduction

● Code Metrics

● Refactoring

● Tools
o VS Ultimate

o NDepend

● Conclusion

Introduction

Complexity - Accidental

Remember the evolution:

● Assembly

● High level/order

● Garbage collection

● Domain specific

Complexity - Essential

bubbleSort(A : list of items)

n = length of A

set swapped false

repeat

for i = 2 to n-1 inclusive do

if A[i-1] > A[i] then

swap A[i-1] with A[i]

set swapped to true

end if

end for

until not swapped

end

Interrelation

Analysis ⇔ Refactoring ⇔ Testing

Code Metrics

Problems

● Technical Debt

● Code Smells
o Large classes

o Long names

o 5 indentation levels…

● Copy-paste code reuse

Software

output = function X(input) {

//Local work

//Global work

}

Example - from OOP

No global => functional => fail

How would a functional method look like?

class X {

output = Method(input)

}

Example - to functional

1.st step

output = Method(this, input)

2nd step

output = Method(global, this, input)

Software Engineering - Tom DeMarco

“Software development is

and always will be somewhat experimental.”

Code Metrics

• Lines of code

• Cyclomatic Complexity

• Maintainability Index

+ etc…

Code Metrics - LOC + extensions

Example
for (i = 0; i < 100; i++) printf("hello");

/* Versus */

for (i = 0; i < 100; i++)

{

printf("hello");

}

Code Metrics - LOC

RefactorExample 1
public enum DanishMonths

{

JANUAR, FEBRUAR, MARTS,

APRIL, MAJ, JUNI,

JULI, AUGUST, SEPTEMBER,

OKTOBER, NOVEMBER, DECEMBER

}

RefactorExample 1 - Refactored

var culture =
CultureInfo.GetCultureInfo("da-DK");

var dateTimeInfo =
DateTimeFormatInfo.GetInstance(culture);

var months =
dateTimeInfo.CurrentInfo.MonthNames;

N = operators + operands

η = distinct (operators + operands)

Code Metrics - Halstead Volume

Example
var x, y

var z = f(x, y)

z = (x+y/2)/3

f2(z)

N = (2+1+1+2+1+1+1)+(3+3+3) = 18

η = 7 + 3 = 10; {(), +, /, =, var, f, f2}, {x, y, z}

=> V = 10 * log(10) = 59.7

Code Metrics - Halstead Volume

Code Metrics - Cyclomatic Complexity

M = E − N + 2P

E = edges.

N = nodes.

P = connected components(cycles).

=> 9-8+2*1=3

Code Metrics - Cyclomatic Complexity

Example:

while(c1()) f1();

if(c2()) f3();

else f4();

Code Metrics - Cyclomatic Complexity

Deceiving

● non-disjoint Ifs

● not accounting for libraries

Testing

● will complexity += 1 => tests += 1? (hint:no!)

● code/branch/path coverage...

Code Metrics - Cyclomatic Complexity

Example
var c

if(c1()) x = f1();

else x = f2();

if(c2()) y = f3();

else y = f4();

if(c3(x, y)) f5();

else f6();

Code Metrics - Cyclomatic Complexity

Further useful for improving

● Time to fix bugs

● Regressing bug

Code Metrics - Cyclomatic Complexity

RefactorExample 2
private string MapBathRooms(string value) {

double retValue = 0;
if (value == "1" || value == "One")

retValue = 1;
if (value == "OneAndHalf" || value == "1.5" || value == "1 1/2")

retValue = 1.5;

//... Up to 10

return retValue.ToString();
}

RefactorExample 2 - Refactored

Dictionary<string, string> BathRoomMap = new Dictionary<double,
List<string>>
{

{ 1, new List<string>() {"1", "One" }
{ 1.5, new List<string>() {"1 1/2", "OneAndHalf" },
// etc

};
private string MapBathRooms(string value) {

var retKeyValue = BathRoomMap.GetKeyValues()
.SingleOrDefault(x=>x.Contains(value))

if(retKeyValue==0) return 0;
return retKeyValue.Key;

}

Code Metrics - Maintainability Index

Problems?

● 1 - magic numbers

● 2 - averages

● ..

● n

Code Metrics - Empirical Research

“Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity”

=> some correlation, interdependence

“Empirical Analysis of Object-Oriented Design Metrics for

Predicting High and Low Severity Faults”

=> some correlation, most with SLoC

Code Metrics - Empirical Research

“Questioning Software Maintenance Metrics:

A Comparative Case Study”

=> Only system size and low cohesion

were strongly associated with increased

maintenance effort”

=> quote more research...

Software Architecture - Ideal

Software Architecture - Cycles

Coupling

Any Methods, Types, Namespaces that have a

direct reference to

• Fields, Methods, Types, Namespaces

Depending on direction: afferent or efferent

Metrics

● Stability

o Couplings (dependencies) – afferent/efferent

● Abstractness

o Types - abstract/concrete

Principles

• Stable Abstractions Principle – stability

should match abstractness as close as

possible

• Stable Dependencies Principle – fewer

dependencies on fast-changing types

Software Architecture – done right

Refactoring

Part 2

Refactoring Methods

Refactoring - Empirical Research

“A Field Study of Refactoring Challenges and

Benefits” by Microsoft, Windows 7 =>

"The difficulty of merging and integration after refactoring

often discourages people from doing refactoring"

"If there is insufficient documentation for scenarios,

refactoring should not be done."

Refactoring - Empirical Research

… =>

"The primary risk is regression, mostly from

misunderstanding subtle corner cases in the original code

and not accounting for them in the refactored code.” - dev.

"top 25% of refactored binaries have 12 percent more

reduction in post-release defects compared to all modified

binaries" - author

Refactoring - Empirical Research

“An Empirical Investigation into the Impact of

Refactoring on Regression Testing” by Texas

University =>
"The results on three open source projects, JMeter,

XMLSecurity, and ANT, show that only 22% of refactored

methods and fields are tested by existing regression tests."

Refactoring - Empirical Research

… =>

"The study found that test coverage of refactoring is

insufficient and that regression tests are significantly

impacted by refactorings edits..."

Demos

Tools

● Visual Studio Ultimate
o code cloning

o metrics

o dependency graph

● FxCop
o command line, rules...

● NDepend
o all above + more

Tools - Choices

● Visual Studio Ultimate
o code cloning

o metrics

o dependency graph

● FxCop
o command line, rules...

● NDepend
o all above + more

Conclusion

Incentives

Would incentivizing compliance lead to a better

development process?

Maybe... No

Why?

Validity

Code analysis

• Fails to capture true complexity

• Is heavily correlated

• Helps enforce qualitative constraints

… in the end

Fundamentally, there is

● Breadth

● Depth

For a given requirements set

F(Breadth, Depth) == CONSTANT

Thanks

for patiently listening

