Code Analysis

Reflect on Your Code

Abstract

Most of the time developers produce code, but they rarely manage to
adequately review their code to a high level of quality.

| aim to introduce simple analysis insights (such as code metrics, complexity,
etc...) and present some crucial tools which really pay-off for medium-large
scale code-bases.

Simple concepts such as code-reuse and re-factoring, although much
discussed in the community, are still not thoroughly understood/employed by
developers.

This is especially obvious when analyzing common open-source projects
(.NET).

I'll illustrate how a very rigorous process of code review and continuous
refactoring have a huge impact.

Disclaimer/Delimitation

* The author does not have significant

experience to provide personal judgements
over specific matter

* Introductory, no in-depth worked example

Plan

Introduction
Code Metrics
Refactoring

Tools
o VS Ultimate
o NDepend

e Conclusion

Introduction

Complexity - Accidental

Remember the evolution:
e Assembly

e High level/order

e Garbage collection

e Domain specific

Complexity - Essential

bubbleSort(A : of items)
n = A
swapped false

for 1 = n-1 inclusive
Ali-1] > A[i]
swap A[1-1] with A[1]
swapped to true

for
not swapped

Interrelation

Analysis & Refactoring & Testing

Code Metrics

Problems

e Technical Debt

e Code Smells

o Large classes
o Long names
o 9 indentation levels...

e Copy-paste code reuse

Software

output = (input) {
//Local work
//Global work

Example - from OOP

No global => functional => fall

How would a functional method look like?

{
output = (input)

Example - to functional

1.st step

output = (this, input)
2nd step

output = (global, this, input)

Software Engineering - Tom DeMarco

“Software development is
and always will be somewhat experimental.”

Code Metrics

* Lines of code
* Cyclomatic Complexity
* Maintainability Index

+ etc...

Code Metrics - LOC + extensions

Example
(i=0;i< 100; i++) printf("hello");

/* Versus */
(i=0;i<100; i++)
{
printf("hello");

}

Code Metrics - LOC

RefactorExample 1
public enum DanishMonths

{
JANUAR, FEBRUAR, MARTS,
APRIL, MAJ, JUNI,
JULI, AUGUST, SEPTEMBER,
OKTOBER, NOVEMBER, DECEMBER

}

RefactorExample 1 - Refactored

var culture =
CultureInfo.GetCultureInfo("da-DK");

var dateTimeInfo =
DateTimeFormatInfo.GetInstance(culture);

var months =
dateTimeInfo.CurrentInfo.MonthNames;

Code Metrics - Halstead Volume
V=N xlog,n

N = operators + operands
n = distinct (operators + operands)

Code Metrics - Halstead Volume

Example

X,y

z = f(x, y)
z = (x+y/2)/3
f2(2)
N=(2+1+1+2+1+1+1)+(3+3+3) = 18
n=7+3=10;{(), +,/, =, var, f, 2}, {x, y, z}
=>V =10 *log(10) = 59.7

Code Metrics - Cyclomatic Complexity

M=E - N +2P »
E = edges. Q\Q
N = nodes.

o
P = connected components(cycles).
g,
g 0O
=> 0-8+2*1=3 \
@

Code Metrics - Cyclomatic Complexity

Example:

(c1()) f10);

(c2()) f30);
f4();

Code Metrics - Cyclomatic Complexity

Deceiving
e non-disjoint Ifs
e not accounting for libraries

Testing
e will complexity += 1 =>tests += 17? (hint:no!)
e code/branch/path coverage...

Code Metrics - Cyclomatic Complexity

Example
C

(cl()) x=f1();
X = f2();

(c2())y =130);
y = f4();

(c3(x,y)) 50);
f6();

Code Metrics - Cyclomatic Complexity

Further useful for improving
e Time to fix bugs
e Regressing bug

Code Metrics - Cyclomatic Complexity

RefactorExample 2

private string MapBathRooms(string value) {
double retValue = 0;

if (value == "1" || value == "One")
retValue = 1;
if (value == "OneAndHalf" || value == "1.5" || value == "1 1/2")

retValue = 1.5;
//... Up to 10

return retValue.ToString();

RefactorExample 2 - Refactored

Dictionary<string, string> BathRoomMap = new Dictionary<double,
List<string>>
{

{ 1, new List<string>() {"1", "One" }

{ 1.5, new List<string>() {"1 1/2", "OneAndHalf" },

// etc
}s
private string MapBathRooms(string value) {

var retKeyValue = BathRoomMap.GetKeyValues()
.SingleOrDefault(x=>x.Contains(value))

if(retKeyValue==0) return 0;
return retkKeyValue.Key;

Code Metrics - Maintainability Index

171-5.2n(HV)—0.23cC—16.2in(LOC)+50.0s5in/2.46 * COM
Problems?

e 1 - magic numbers

e 2 - averages

° ..

e N

Code Metrics - Empirical Research

“Empirical Analysis of CK Metrics for Object-Oriented
Design Complexity”

=> some correlation, interdependence
“Empirical Analysis of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults”

=> some correlation, most with SLoC

Code Metrics - Empirical Research

“Questioning Software Maintenance Metrics:
A Comparative Case Study”

=> Only system size and low cohesion
were strongly associated with increased
maintenance effort”

=> guote more research...

Software Architecture - Ideal

Level 3

Level 2 \
v v

Level 1 l

§r ==
Level O l—

Tiers components

Software Architecture - Cycles

Level N/A
Level 3
<
Level 2 \
Level 1
Level O l l¢——
\ 4

Tiers components -+

Coupling

Any Methods, Types, Namespaces that have a
direct reference to
* Fields, Methods, Types, Namespaces

Depending on direction: afferent or efferent

Metrics

C, +C,
o Couplings (dependencies) — afferent/efferent
e Abstractness

e Stability ,__C

A=—a
N

o Types - abstract/concrete

Principles

« Stable Abstractions Principle — stabllity
should match abstractness as close as
possible

« Stable Dependencies Principle — fewer
dependencies on fast-changing types

Software Architecture — done right

A (abstractness) (1,1)

(0.1)

Zone of
Uselessness

The main
sequence

Refactoring

Part 2

Refactoring Methods

rename elemeant

create getter setter

axtract local variable

override methods

move elemeant

extract method

generate constructor using fiekds
surround with try catch

modify method parameters
inline

add wnimplemented constructors
extract constant

sort members

generate hashcode equals
generate tostring

zelf encapsulate field

promote local variable

extract interface

2000

10000

15000

20000

Refactoring - Empirical Research

“A Fleld Study of Refactoring Challenges and
Benefits” by Microsoft, Windows 7 =>

"The difficulty of merging and integration after refactoring
often discourages people from doing refactoring"

"If there is insufficient documentation for scenarios,
refactoring should not be done."

Refactoring - Empirical Research

L=
"The primary risk is regression, mostly from
misunderstanding subtle corner cases in the original code
and not accounting for them in the refactored code.” - dev.

"top 25% of refactored binaries have 12 percent more
reduction in post-release defects compared to all modified
binaries" - author

Refactoring - Empirical Research

“An Empirical Investigation into the Impact of
Refactoring on Regression Testing” by Texas

University =>

"The results on three open source projects, JMeter,
XMLSecurity, and ANT, show that only 22% of refactored
methods and fields are tested by existing regression tests."

Refactoring - Empirical Research
. =>

"The study found that test coverage of refactoring is
iInsufficient and that regression tests are significantly
Impacted by refactorings edits..."

Demos

Tools

e Visual Studio Ultimate
o code cloning
o Mmetrics
o dependency graph

e FxCop

o command line, rules...

e NDepend

o all above + more

Tools - Choices

e Visual Studio Ultimate
o code cloning
o Mmetrics
o dependency graph

e FxCop

o command line, rules...

e NDepend

o all above + more

Conclusion

Incentives

Would incentivizing compliance lead to a better
development process?

Maybe... No

Why?

Validity

Code analysis

* Falls to capture true complexity
* Is heavily correlated

* Helps enforce qualitative constraints

... in the end

Fundamentally, there is
e Breadth
e Depth

For a given requirements set
F(Breadth, Depth) == CONSTANT

Thanks

for patiently listening

