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Who am I?

Kasper Lund, software engineer at Google
Co-founder of the Dart project

Key projects
V8: High-performance JavaScript engine
Dart: Structured programming for the web
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@® Dart

What is it, really?
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TL;DR

Programming language
ntegrated development tools
Rich core libraries
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TL;DR

language
tools
libraries
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@& Dart 1.6

Dart is a scalable web app platform
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Dart runs everywhere!

Runs on native Dart VM

Runs on native Dart VM - or translated to JavaScript
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Language



The Dart language

Unsurprising and object-oriented
Class-based single inheritance
Familiar syntax with lexical scoping
Optional static type annotations
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Dart for JavaScript programmers

main() {

var greeting = “Hello, World”;

}

print(greeting);

-~

Dart is flexible

more to Java programmers

2N

Let's change this to appeal a bit
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Dart for Java programmers

void main() {
String greeting = “Hello, World”,

print(greeting);
} [What? No classes? J
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Dart for Java programmers

void main() {
Person person = new Person(“Kasper”);
print(“Hello $person”);

3

class Person {
String name;
Person(this.name);
toString() => name;

}
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Dart for JavaScript programmers

main() {

var person = new Person(“Kasper”);
print(“Hello $person”);

}

class Person {
var name;

Person(this.name); / No reason to write this.name here!

toString() => namm;

} T

Proper lexical scoping

Fail early and predictably

Typos lead to recognizable compile-
time and runtime errors
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Tools



The Dart tools

Working with code Executing code
Analyzer Virtual machine
Dart-to-JavaScript compiler (dart2js)
Formatter
Package manager (pub) Understanding code
Coverage tracker
Profiler
Debugger
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Let's see that in action!

Demonstration of the Dart editor
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Toolability

What makes a language toolable?

1. The language must have enough structure to
allow efficient static analysis

2. The language must allow developers to
understand and trust the analysis results
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Libraries



The Dart libraries
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Core libraries - dart:core

Classes: bool, int, double, String

value.clamp(@, 255).toRadixString(16)

input.trim().padLeft(8, padding: “07)

™

{ Named optional

parameter

J
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Core libraries - dart:core

Classes: List, Map, Set

Map<int, String> cache = ..;
cache.keys
.where((key) => key.isEven)
.map((key) => cachel[key])
.forEach(print);

-

"

All the intermediate
collections are lazy and
of type Iterable

N

J
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Core libraries - dart:async

Classes: Future, Stream

HttpRequest.getString(“localhost:8080")
.then(print);

input.onKeyUp
.map((event) => event.target.value)
.distinct()
.forEach(print);
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Higher level libraries

VAV NGULARDART
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pub.dartlang.org

THE BRITISH GU_'!}EN

it

© thejetsetter.co.uk
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Dart everywhere!

Demo of client- and server-side code
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Language

(part deux)



New language features

Enumerations
Generators and async functions
Deferred loading
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New language features

CGenerators and async funct@

Deferredioading
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The four types of functions

sync

async

one many
T Iterable<T>
Stream<T>

g Future<TD
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Repeatedly waiting

final context = querySelector(”canvas”).context2D;

bool running = true; // Set to false to stop animation.

main() {
void tick(time) {
context.clearRect(@, 0, 500, 500);
context.fillRect(time % 450, 20, 50, 50);

if (running) window.animationFrame.then(tick);

3

window.animationFrame.then(tick);

“ } #dartlang



Repeatedly awaiting!

final context = querySelector(”canvas”).context2D;

bool running = true; // Set to false to stop animation.

main() async { This doesn’t work
while (running) { — in Dart today

var time = await window.animationFrame;
context.clearRect(@, 0, 500, 500);
context.fillRect(time % 450, 20, 50, 50);
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Our libraries are ready!

Properties

Future<num> get animationFrame

Returns a Future that completes just before the window is about to repaint so the user
can draw an animation frame.

If you need to later cancel this animation, use requestAnimationFrame instead.

The Future completes to a timestamp that represents a floating point value of the number
of milliseconds that have elapsed since the page started to load (which is also the
timestamp at this call to animationFrame).

Note: The code that runs when the future completes should call animationFrame again
for the animation to continue.

#dartlang



The four types of functions

sync

async

one many
T Iterable<T>
Stream<T>

g Future<TD
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The four types of functions

sync

async

one many
T Iterable<T>
(..) async { .. } Stream<T>
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The four types of functions

await

yield
..){ .3 (..) sync* { .. }
A\
(..)asunc { B / }
Iterable<int> range(int n) sync* {
for (int i = 0; 1 < n; i+t+) {
yield i;
}
J y,
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Deferred loading
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Deferred loading

import “analytics.dart” deferred as analytics;

main() {
startAnalytics();

startApplication();

startAnalytics() async {
await analytics.loadlLibrary();

analytics.enableControls();
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Productivity
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Unsurprising semantics
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Constructors are just functions

function Point(x, y) {

this.x = x;

this.y = vy;
[Forgot to write new ]

/

var point = Point(2, 3);
assert(point == undefined);
So we get two new
assert(x == 2 && y == 3); < [globalvariables! } Js
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Accessing non-existing properties

var request = new XMLHttpRequest();

readyState?

request.onreadystatechange = function() { [Fﬁdyournemwl

. 47
if (request.readystate == 4) {

!

console.log('Request done:

JS
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Subtle details

If you find yourself always worrying about
subtle details in your code ...

... you are distracted
... you are less productive
... you are ready to try Dart!
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Performance



DeltaBlue

Benchmarks

FluidMotion

Havlak

Richards

Tracer

f \...v»]‘f'ﬁ‘n

.dart
.dart.js
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Try that with a larger code base...

COde b( Dart (1.6.0): dart2js.dart \

Feature
Implem

User time (seconds): 17.85
System time (seconds): 0.95 2l
Percent of CPU this job got: 102% ..r, etc°

Memory usage (MB): 153
ode

V8 (3.26.31.10): dart2js.dart.js

User time (seconds): 49.25

System time (seconds): 1.79
Percent of CPU this job got: 120%
Memory usage (MB): 484
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Conclusions



Dartis ...

unsurprising

fAarmiliar

... and ready to be used today! —

I vpjecL-oricritceu I
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Your new platform for the web?

Dart is a stable platform you can use today
It is easy to get started - just visit dartlang.org

‘ Dart
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Thank you!
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