@& Dart

Kasper Lund

... and why you should care
, GOTO Nights
... but probably don't September, 2014

#dartlang

Who am I?

Kasper Lund, software engineer at Google
Co-founder of the Dart project

Key projects
V8: High-performance JavaScript engine
Dart: Structured programming for the web

#dartlang

@® Dart

What is it, really?

aaaaaaaaa

TL;DR

Programming language
ntegrated development tools
Rich core libraries

#dartlang

TL;DR

language
tools
libraries

#dartlang

@& Dart 1.6

Dart is a scalable web app platform

#dartlang

Dart runs everywhere!

Runs on native Dart VM

Runs on native Dart VM - or translated to JavaScript

#dartlang

Language

The Dart language

Unsurprising and object-oriented
Class-based single inheritance
Familiar syntax with lexical scoping
Optional static type annotations

#dartlang

Dart for JavaScript programmers

main() {

var greeting = “Hello, World”;

}

print(greeting);

-~

Dart is flexible

more to Java programmers

2N

Let's change this to appeal a bit

#dartlang

Dart for Java programmers

void main() {
String greeting = “Hello, World”,

print(greeting);
} [What? No classes? J

#dartlang

Dart for Java programmers

void main() {
Person person = new Person(“Kasper”);
print(“Hello $person”);

3

class Person {
String name;
Person(this.name);
toString() => name;

}

#dartlang

Dart for JavaScript programmers

main() {

var person = new Person(“Kasper”);
print(“Hello $person”);

}

class Person {
var name;

Person(this.name); / No reason to write this.name here!

toString() => namm;

} T

Proper lexical scoping

Fail early and predictably

Typos lead to recognizable compile-
time and runtime errors

#dartlang

INTERNATIONAL

alef=ine A-40
- 1t Edition / June 2014

Rue du Rhéne 114 CH-1204 Geneva +41 22 849 6000 F: +4

#dartlang

Tools

The Dart tools

Working with code Executing code
Analyzer Virtual machine
Dart-to-JavaScript compiler (dart2js)
Formatter
Package manager (pub) Understanding code
Coverage tracker
Profiler
Debugger

N #dartlang

Let's see that in action!

Demonstration of the Dart editor

#dartlang

Toolability

What makes a language toolable?

1. The language must have enough structure to
allow efficient static analysis

2. The language must allow developers to
understand and trust the analysis results

#dartlang

Libraries

The Dart libraries

¥ T 'I.I,] _!IJ.II:'.'._
UL LIRS g

| :I;'il.l:'l_ll '.l;::l".'.;l'. ?'l'liu_ll) I|! -.
g T
e

#dartlang

Core libraries - dart:core

Classes: bool, int, double, String

value.clamp(@, 255).toRadixString(16)

input.trim().padLeft(8, padding: “07)

™

{ Named optional

parameter

J

#dartlang

Core libraries - dart:core

Classes: List, Map, Set

Map<int, String> cache = ..;
cache.keys
.where((key) => key.isEven)
.map((key) => cachel[key])
.forEach(print);

-

"

All the intermediate
collections are lazy and
of type Iterable

N

J

#dartlang

Core libraries - dart:async

Classes: Future, Stream

HttpRequest.getString(“localhost:8080")
.then(print);

input.onKeyUp
.map((event) => event.target.value)
.distinct()
.forEach(print);

#dartlang

Higher level libraries

VAV NGULARDART

aaaaaaaaa

pub.dartlang.org

THE BRITISH GU_'!}EN

it

© thejetsetter.co.uk
#dartlang

Dart everywhere!

Demo of client- and server-side code

#dartlang

Language

(part deux)

New language features

Enumerations
Generators and async functions
Deferred loading

#dartlang

New language features

CGenerators and async funct@

Deferredioading

‘ #dartlang

The four types of functions

sync

async

one many
T Iterable<T>
Stream<T>

g Future<TD

#dartlang

Repeatedly waiting

final context = querySelector(”canvas”).context2D;

bool running = true; // Set to false to stop animation.

main() {
void tick(time) {
context.clearRect(@, 0, 500, 500);
context.fillRect(time % 450, 20, 50, 50);

if (running) window.animationFrame.then(tick);

3

window.animationFrame.then(tick);

“ } #dartlang

Repeatedly awaiting!

final context = querySelector(”canvas”).context2D;

bool running = true; // Set to false to stop animation.

main() async { This doesn’t work
while (running) { — in Dart today

var time = await window.animationFrame;
context.clearRect(@, 0, 500, 500);
context.fillRect(time % 450, 20, 50, 50);

#dartlang

Our libraries are ready!

Properties

Future<num> get animationFrame

Returns a Future that completes just before the window is about to repaint so the user
can draw an animation frame.

If you need to later cancel this animation, use requestAnimationFrame instead.

The Future completes to a timestamp that represents a floating point value of the number
of milliseconds that have elapsed since the page started to load (which is also the
timestamp at this call to animationFrame).

Note: The code that runs when the future completes should call animationFrame again
for the animation to continue.

#dartlang

The four types of functions

sync

async

one many
T Iterable<T>
Stream<T>

g Future<TD

#dartlang

The four types of functions

sync

async

one many
T Iterable<T>
(..) async { .. } Stream<T>

#dartlang

The four types of functions

await

yield
..){ .3 (..) sync* { .. }
A\
(..)asunc { B / }
Iterable<int> range(int n) sync* {
for (int i = 0; 1 < n; i+t+) {
yield i;
}
J y,

#dartlang

Deferred loading

#dartlang

Deferred loading

import “analytics.dart” deferred as analytics;

main() {
startAnalytics();

startApplication();

startAnalytics() async {
await analytics.loadlLibrary();

analytics.enableControls();

N\ 3 #dartlang

Productivity

#dartlang

Unsurprising semantics

#dartlang

Constructors are just functions

function Point(x, y) {

this.x = x;

this.y = vy;
[Forgot to write new]

/

var point = Point(2, 3);
assert(point == undefined);
So we get two new
assert(x == 2 && y == 3); < [globalvariables! } Js

#dartlang

Accessing non-existing properties

var request = new XMLHttpRequest();

readyState?

request.onreadystatechange = function() { [Fﬁdyournemwl

. 47
if (request.readystate == 4) {

!

console.log('Request done:

JS

#dartlang

+ request.responseText);

Subtle details

If you find yourself always worrying about
subtle details in your code ...

... you are distracted
... you are less productive
... you are ready to try Dart!

#dartlang

Performance

DeltaBlue

Benchmarks

FluidMotion

Havlak

Richards

Tracer

f \...v»]‘f'ﬁ‘n

.dart
.dart.js

#dartlang

Try that with a larger code base...

COde b(Dart (1.6.0): dart2js.dart \

Feature
Implem

User time (seconds): 17.85
System time (seconds): 0.95 2l
Percent of CPU this job got: 102% ..r, etc°

Memory usage (MB): 153
ode

V8 (3.26.31.10): dart2js.dart.js

User time (seconds): 49.25

System time (seconds): 1.79
Percent of CPU this job got: 120%
Memory usage (MB): 484

#dartlang

Conclusions

Dartis ...

unsurprising

fAarmiliar

... and ready to be used today! —

I vpjecL-oricritceu I

#dartlang

Your new platform for the web?

Dart is a stable platform you can use today
It is easy to get started - just visit dartlang.org

‘ Dart

#dartlang

Thank you!

aaaaaaaaa

