
#dartlang

Kasper Lund

GOTO Nights
September, 2014

… and why you should care
… but probably don’t
… yet

#dartlang

Who am I?

Kasper Lund, software engineer at Google
Co-founder of the Dart project

Key projects
V8: High-performance JavaScript engine
Dart: Structured programming for the web

#dartlang

What is it, really?

#dartlang

TL;DR

Programming language
Integrated development tools
Rich core libraries

#dartlang

TL;DR

Programming language
Integrated development tools
Rich core libraries

#dartlang

 1.6 1.0
Dart is a scalable web app platform

#dartlang

Dart runs everywhere!

Runs on native Dart VM - or translated to JavaScript

Runs on native Dart VM

#dartlang

Language

#dartlang

The Dart language

Unsurprising and object-oriented
Class-based single inheritance
Familiar syntax with lexical scoping
Optional static type annotations

#dartlang

Dart for JavaScript programmers
main() {
 var greeting = “Hello, World”;
 print(greeting);
}

Dart is flexible

Let’s change this to appeal a bit
more to Java programmers

#dartlang

Dart for Java programmers
void main() {
 String greeting = “Hello, World”;
 print(greeting);
} What? No classes?

#dartlang

Dart for Java programmers
void main() {
 Person person = new Person(“Kasper”);
 print(“Hello $person”);
}

class Person {
 String name;
 Person(this.name);
 toString() => name;
}

#dartlang

Dart for JavaScript programmers
main() {
 var person = new Person(“Kasper”);
 print(“Hello $person”);
}

class Person {
 var name;
 Person(this.name);
 toString() => ;
}

Proper lexical scoping

No reason to write this.name here!

Fail early and predictably

Typos lead to recognizable compile-
time and runtime errors

naemname

#dartlang

#dartlang

Tools

#dartlang

The Dart tools
Working with code
Analyzer
Editor
Formatter
Package manager (pub)

Executing code
Virtual machine
Dart-to-JavaScript compiler (dart2js)

Understanding code
Coverage tracker
Profiler
Debugger

#dartlang

Let’s see that in action!
Demonstration of the Dart editor

#dartlang

Toolability

What makes a language toolable?

1. The language must have enough structure to
allow efficient static analysis

2. The language must allow developers to
understand and trust the analysis results

#dartlang

Libraries

#dartlang

The Dart libraries

#dartlang

Core libraries - dart:core

Classes: bool, int, double, String

value.clamp(0, 255).toRadixString(16)

input.trim().padLeft(8, padding: “0”)

Named optional
parameter

#dartlang

Core libraries - dart:core

Classes: List, Map, Set

 Map<int, String> cache = …;

cache.keys

.where((key) => key.isEven)

.map((key) => cache[key])

.forEach(print);

All the intermediate
collections are lazy and

of type Iterable

#dartlang

Core libraries - dart:async

Classes: Future, Stream

HttpRequest.getString(“localhost:8080”)

.then(print);

input.onKeyUp

.map((event) => event.target.value)

.distinct()

.forEach(print);

#dartlang

Higher level libraries

Polymer.dart

#dartlang

pub.dartlang.org

© thejetsetter.co.uk

#dartlang

Dart everywhere!
Demo of client- and server-side code

#dartlang

Language
(part deux)

#dartlang

New language features

Enumerations
Generators and async functions
Deferred loading

#dartlang

New language features

Enumerations enum
Generators and async functions
Deferred loading

#dartlang

The four types of functions

T Iterable<T>

Future<T> Stream<T>

one many

sync

async

#dartlang

Repeatedly waiting
final context = querySelector("canvas").context2D;

bool running = true; // Set to false to stop animation.

main() {

 void tick(time) {

 context.clearRect(0, 0, 500, 500);

 context.fillRect(time % 450, 20, 50, 50);

 if (running) window.animationFrame.then(tick);

 }

 window.animationFrame.then(tick);

}

#dartlang

Repeatedly awaiting!
final context = querySelector("canvas").context2D;

bool running = true; // Set to false to stop animation.

main() async {

 while (running) {

 var time = await window.animationFrame;

 context.clearRect(0, 0, 500, 500);

 context.fillRect(time % 450, 20, 50, 50);

 }

}

This doesn’t work
in Dart today

#dartlang

Our libraries are ready!

#dartlang

The four types of functions

T Iterable<T>

Future<T> Stream<T>

one many

sync

async

#dartlang

The four types of functions

T Iterable<T>

(..) async { … } Stream<T>

one many

sync

async

#dartlang

The four types of functions

(..) { … } (..) sync* { … }

(..) async { … } (..) async* { … }

yield

await

Iterable<int> range(int n) sync* {
 for (int i = 0; i < n; i++) {
 yield i;
 }
}

#dartlang

Sometimes it
pays off to be

lazy...

Deferred loading

#dartlang

Deferred loading
import “analytics.dart” deferred as analytics;

main() {

 startAnalytics(); // Doesn’t block.

 startApplication();

}

startAnalytics() async {

 await analytics.loadLibrary();

 analytics.enableControls();

}

#dartlang

Productivity

#dartlang

The Dart productivity factors

Expressive language
Great tools
Rich libraries

… but is that really the entire story?

#dartlang

Unsurprising semantics

#dartlang

Constructors are just functions
function Point(x, y) {

 this.x = x;

 this.y = y;

}

var point = Point(2, 3);

assert(point == undefined);

assert(x == 2 && y == 3);

Forgot to write new

So we get two new
global variables!

#dartlang

Accessing non-existing properties
var request = new XMLHttpRequest();

...

request.onreadystatechange = function() {

 if (request.readystate == 4) {

 console.log('Request done: ' + request.responseText);

 }

};

Did you mean
readyState?

#dartlang

Subtle details

If you find yourself always worrying about
subtle details in your code …

… you are distracted
… you are less productive
… you are ready to try Dart!

#dartlang

Performance

#dartlang

Benchmarks
.dart
.dart.js
.js

#dartlang

Try that with a larger code base...

Code base: dart2js
Features: Parser, SSA-based optimizer, etc.
Implementation: 110K lines of Dart code

dart2js.dart.jsdart2js.dart

Dart (1.6.0): dart2js.dart

 User time (seconds): 17.85
 System time (seconds): 0.95
 Percent of CPU this job got: 102%
 Memory usage (MB): 153

V8 (3.26.31.10): dart2js.dart.js

 User time (seconds): 49.25
 System time (seconds): 1.79
 Percent of CPU this job got: 120%
 Memory usage (MB): 484

#dartlang

Conclusions

#dartlang

Dart is ...

unsurprising

object-oriented

reasonable

familiar

productive
open-source… and ready to be used today!

#dartlang

Your new platform for the web?

Dart is a stable platform you can use today
It is easy to get started - just visit dartlang.org

#dartlang

Thank you!

