Solving Problems
the Swift Way

Ash Furrow
@ashfurrow

2.Everyone IS a beginner again

3.We should share what we learn

Problem-Solving

“Problem Solving”

You are here You wanna be here

these new tools and technigues

e | et’'s take a ook at some examples

* |ndicates "'missing” value

 Replaces nil, Nil, NULL, CGRectNull, -1,
NSNotFound, NSNull, etc

 Haskell's "Maybe”™ monad

o C#'s "Nullable Types”

e \Which IS awesome

 NO, seriously, awesome
* Eliminates several classes of bugs

 Don't over-use optional types

1f a !'= nil {

// use al

1f let a = a {
// do something with a

¥

* [hey are lightweight, temporary containers
for multiple values

e [Nhose values can be named

o Usetul for functions with multiple return types

v, v, v, PAWAY ,

// ...
return (result, errorCode)

¥

let calculation = calculate()

1f (calculation.®) {
// ..

¥

¥

calculate()
calculation

let calculation
let (result, _)

1f (result) {
// ..

¥

recurn (resuLc. resu

, errorCode: errorCode

¥

let calculation = calculate()
1f (calculation.errorCode) {

/] ...
¥

for (key, value) 1in dictionary {
// ...

¥

 New APls shouldn't use out parameters
* eQ0: NSError pointers

 Really great tor use in pattern-matching

DlY UALANAAY \ v JI 1Al DJIUUYI C 9

e Really useful In tail-recursive functions
 Don'ttry and apply that technigue here

e [ke "switch” statements on steroids

switch (1ndexPath.row) {
case Q:

break;

switch (1ndexPath.row) {
case ASHLoginSectionUserNameRow:

break;

UA'A N e v, v, v, v, v,

switch (1ndexPath.section, indexPath.row) {
case (0, _):

default:

¥

UA'A N e v, v, v, v, v,

switch (1ndexPath.section, indexPath.row) {
case (0, let row):

default:

¥

UA'A N e v, v, v, v, v,

switch (1ndexPath.section, indexPath.row) {
case (@, let row) where row > 5:

default:

¥

switch list {
case (let head, nil):
//. ..
case (let head, let tail):
//. ..

Ike C# and C++

* Using a generic type as a placeholder, we
can infer the type of variables at compile-
time

o A part of Swift's “safe by default” behaviour

mutating func push(item:
1tems.append(1tem)

$
mutating func pop() -> T {

return i1tems.removelLast()

¥

Stack<String>()

var stack

var stack = Stack<Recipe>()

}
mutating func pop() -> T {

return items.removelLast()

¥
¥

func ==<T>(lhs: Stack<T>, rhs: Stack<T>) -> Bool {
return lhs.i1tems == rhs.items

¥

abstract data type structure

 \Whenever possible, don't bind new data
structures to existing ones

* Use protocols for loose coupling

e [uples

e (3enerics

Everyone Is a Beginner

* INO One Is dl expert | Wi

e This can be kind of stresstul

e Relax

e pbenetits outweligns the cost of learning
 Depending on your circumstance

* Have your say

* [he hardest thing Is the most important thing
o Start

 Don't be embarrassed to ask questions!

* [ry to ask in public so others can benefit
from the answer

e [et's borrow ideas

o Community-based conventions and
guidelines are still being established

What We Learn

* Conventions and guidelines are still in flux

* There's an opportunity to significantly alter
the future of I0S and OS X programming

e The demand for material on Swift Is HUGE

o (Great opportunity to get known

* \When you teach, you learn

e |f we all share what we learn, we all get
smarter

* Rising tides lift all boats

Tweets
Gists

Open source

Radars

2.Everyone IS a beginner again

3.We should share what we learn

A v 4 AR A AR

Mistakes Tomorrow

@ashfurrow

