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How do we fix the world?



How do we fix the world?

* First, we solve a general problem of

“how to connect any code to any code, anywhere”

* Second, we wrap that up in the simplest possible building
blocks that

people could understand and use easily



Fixing the world...
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ZeroMQ

* Looks like an embeddable networking library but acts
like a concurrency framework

* Based on low-level socket API but exposes high-level
messaging patterns

* Gives you sockets that carry atomic messages

* Open source (LGPL)



Demo: Fire — and - Forget
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Context

* Entry point

* Single instance in your process
* knows about all sockets the process is using
* inter thread communication

e carries configuration, disposes all sockets

Socket

* Send and receive messages
* Connects to/from many endpoints
* Defines communication pattern



Message
« ZeroMQ transport messages instead of stream of bytes

* Not a neutral carrier
* Framing on the transport protocol
* Not compatible with existing protocols (e.g. http)

* Message body
* byte[]
* String



Asynchronous messaging

* Message queueing
* |/O in a background thread
» Socket can connect to endpoint before it has been binded

* Send() does not necessarily send message but enqueue



Demo: Publish - Subscribe
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Publish - Subscribe

* subscriber can connect to more than one publisher

 data will then arrive and be interleaved ("fair-queued")

« filtering happens at the publisher side (TCP, IPC)

* Subscriber receives messages only when connected

* Publisher drops messages, when there is no subscriber
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Demo: Request - Reply
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Simplicity
* No serialization or compression

* No authentication or encryption

* Reliable but not durable messaging
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Cross - platform

* 30+ language bidings
* Ada, Bash, Basic, C, ChickenScheme, CommonlLisp, C#, C++, D, Erlang, F#, Felix,
Flex(ActionScript), Go, Guile, Haskell, Haxe, Java, JavaScript(Flash), Lua, s, Node.js,

Objective-C, ObjectiveCaml, ooc, Perl, PHP, Python, Racket, R, REBOL2, REBOL3, Red,
Ruby, (FFI), Scala, Smalltalk, Tcl, Twisted(Python), ...

* Interoperable messages
* OS-agnosticism: Linux, Windows, OS X

e Consistent API
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Pipeline
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ZeroMQ and .NET

* clrzmq

NET "binding” clrzmq.dl|

e open source, available on NuGet

bundled libzmq version - old (2.x) but stable

Build on top of native C++ library
* libzmq.dll
* current version 4.x
* new transport protocol ZMTP provides cross platform secure connection

* NetMQ
* Native .NET port

16



The Zen of Zero
. BMQ

* Originally the zero in @MQ was meant as "zero broker" and (as close
to) "zero latency" (as possible)

* In the meantime it has come to cover different goals: zero
administration, zero cost, zero waste

* More generally, "zero" refers to the culture of minimalism that
permeates the project
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Router - Dealer
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Router - Dealer
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Network communication

* gives you sockets that carry whole messages across various
transports

* You can connect sockets N-to-N with communication patterns

Multithreading

 Communication inside your host process

* we don't need mutexes, locks, or any other form of inter-thread
communication except messages sent across @MQ sockets
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Different Transports

* INPROC:

* In-process transport
* passes messages via memory directly between threads

* IPC

* Inter-process transport

. passgs messages between local processes using a system-dependent IPC
mechanism

« TCP

 ubiquitous, reliable unicast transport

* PGM/EPGM

 protocol for reliable multicast transport of data over IP networks
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Basic Buiding Blocks

Socket types Messaging patterns

e Push * Pipeline

e Pull

* Pub * Publisher — Subscriber
e Sub

* Req * Request - Reply

* Rep

* Router

e Dealer  (Exclusive pair)



Load Balancer

Client

Client Client

~ LS

Server

i
— .

Thre%d Pool

Worker

Worker Worker

23



Demo: “Simple” Load Balancer
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"Better” Load Balancer
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Publish - Subscribe with Snapshot

APPL: 585
GOOG: 518
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Publish-subscribe with snapshot and update

Chairs: 200

Tables: 31
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Reliability?

* Reliability
 Crash of server
 Crash of client
Unreliable network
Slow performance
Hardware can fail
Data centers can be struck by lightning, fire etc.
Informing user about disconnects

 How does it ZeroMqg handle?
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Reliability

» ZeroMQ does not handle all error cases but provides some tools for
building reliability

* The level of reliability depends on the use-case

* Solutions

* Retry on time-out

* Heart beating

 Limit on used resources
ldempotent



Lazy Pirate Pattern

Server
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30



Reliability: Slow subscriber

Pub

N

Sub

* What happens if there is a slow subscriber?

* Queue messages on the publisher?

* Queue messages on the subscriber?
 Stop queuing new messages after a while?
* Punish slow subscribers with disconnect?
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Suicidal snail

* Subscriber receives messages from publisher
* Subscriber detects if it is receiving messages too slow

* If it receives too slow then it kills itself and thereby stop receiving
messages
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High water mark

* A way of dealing with over-full queues

* When a queue is full (reach it water mark) then it throws away new
messages (or blocks sender)

* This means that queues will only contain a predefined amount of
data

* However dropping messages might result in lost data
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How to: Suicidal snail

* Put a high water mark on the publisher send queue
* Put a high water mark on the subscriber receive queue

* Sequence number on all messages being send

* When the subscriber receives the messages then it checks if the
sequence numbers are consecutive

* If they are not consecutive then messages has been lost because hitting the
high water
» The subscriber kills itself when messages are not consecutive
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More reliability patterns

* Binary Star

* Paranoide Pirate
* Simple Pirate

* Majordomo

* Titanic

* Freelance
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Performance

* Throughput
* Latency
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Performance

Model: Lenovo Z510

Operating System: Microsoft Windows 8.1
- Version: 6.3.9600

Network
- Realtek RTL8102E Family PCI-E Fast Ethernet (10/100MBit)

Number of Processors: 1
- Name: Intel 4 Core i7-4702MQ CPU @ 2.20GHz

Ram
-16 GB
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Remote: Messages per second
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Remote: Mega bit per second
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Remote: Latency (ps)
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Localhost: Messages per second
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Localhost: Mega bit per second
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Localhost: Latency (ps)
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Why ZeroMQ

* Open source
 LGPL
* Big active community

* High Performance
* Send millions of messages per second

* "Easy” to use, integrate
* Pleasure to code

* Flexible
 Able to create all kinds of distributed systems

* Low running cost
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Why not ZeroMQ

* Not a widely used protocol
* S0 maybe not so good for public APIs as for example REST

* Custom protocols
* E.g. cannot implement a web server

* Complexity

* Other communication frameworks exists for specific purposes
* Web services

* Message queue
* ESB
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Refferences

* http://zeromq.org/

* http://zquide.zeromg.org
* Good guide to ZeroMQ

* https://github.com/zeromq/clrzmqg
* .Net binding

* http://pluralsight.com
» ZeroMQ: Messaging for Many Applications
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Contact us

* Comiit ApS
 Vesterbro Torv 1-3, 3rd floor, Aarhus (with reqular Friday bar full of geeks ;)
* Www.comiit.com
* http://www.bigdatadenmark.dk

* Vladimir Smida

» vladimir@comiit.com
 https://www.linkedin.com/in/vsmida

* Rasmus Nygaard Andersen
* rasmus@comiit.com
* https://www.linkedin.com/in/rasmusnygaardandersen
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