Building distributed systems
with ZeroMQ

Vladimir Smida

Software developer & Partner at Comiit ApS

12. August 2014

How do we fix the world?

How do we fix the world?

* First, we solve a general problem of

“how to connect any code to any code, anywhere”

* Second, we wrap that up in the simplest possible building
blocks that

people could understand and use easily

Fixing the world...

TCFP socket ZAFR!

OMQ socket
POW! !

Spandex
Cosmic rays

Illegal radiclsoTopes from
secret Soviet atomic citTy

ZeroMQ

* Looks like an embeddable networking library but acts
like a concurrency framework

* Based on low-level socket API but exposes high-level
messaging patterns

* Gives you sockets that carry atomic messages

* Open source (LGPL)

Demo: Fire — and - Forget

Sender
PUSH

PULL

Listener

Context

* Entry point

* Single instance in your process
* knows about all sockets the process is using
* inter thread communication

e carries configuration, disposes all sockets

Socket

* Send and receive messages
* Connects to/from many endpoints
* Defines communication pattern

Message
« ZeroMQ transport messages instead of stream of bytes

* Not a neutral carrier
* Framing on the transport protocol
* Not compatible with existing protocols (e.g. http)

* Message body
* byte[]
* String

Asynchronous messaging

* Message queueing
* |/O in a background thread
» Socket can connect to endpoint before it has been binded

* Send() does not necessarily send message but enqueue

Demo: Publish - Subscribe

Publisher
FUE
bind
updates
" |
updates updates updates
¢ Y l
connect connect connect
[SUB [SUB [SUB

Subscriber Subscriber Subscriber

10

Publish - Subscribe

* subscriber can connect to more than one publisher

 data will then arrive and be interleaved ("fair-queued")

« filtering happens at the publisher side (TCP, IPC)

* Subscriber receives messages only when connected

* Publisher drops messages, when there is no subscriber

11

Demo: Request - Reply

Client

REQ

|

|

REP

Server

12

Simplicity
* No serialization or compression

* No authentication or encryption

* Reliable but not durable messaging

13

Cross - platform

* 30+ language bidings
* Ada, Bash, Basic, C, ChickenScheme, CommonlLisp, C#, C++, D, Erlang, F#, Felix,
Flex(ActionScript), Go, Guile, Haskell, Haxe, Java, JavaScript(Flash), Lua, s, Node.js,

Objective-C, ObjectiveCaml, ooc, Perl, PHP, Python, Racket, R, REBOL2, REBOL3, Red,
Ruby, (FFI), Scala, Smalltalk, Tcl, Twisted(Python), ...

* Interoperable messages
* OS-agnosticism: Linux, Windows, OS X

e Consistent API

14

Pipeline

Ventilator

FUSH

¢

v '

FULL FULL FULL
Worker Worker Worker
FUSH FUSH PUSH

resullts

PULL

Sink

15

ZeroMQ and .NET

* clrzmq

NET "binding” clrzmq.dl|

e open source, available on NuGet

bundled libzmq version - old (2.x) but stable

Build on top of native C++ library
* libzmq.dll
* current version 4.x
* new transport protocol ZMTP provides cross platform secure connection

* NetMQ
* Native .NET port

16

The Zen of Zero
. BMQ

* Originally the zero in @MQ was meant as "zero broker" and (as close
to) "zero latency" (as possible)

* In the meantime it has come to cover different goals: zero
administration, zero cost, zero waste

* More generally, "zero" refers to the culture of minimalism that
permeates the project

17

Router - Dealer

Client

REQ

R1l, R2,'R3, R4

H1,1[4

Service
A

5 e

v

Service
B

Service
(¥

18

Router - Dealer

Client Client 1 Client 2 Client 3
REQ REQ REQ REQ
DEALER
|
l l l ROUTER
REP REP REP REP
Service A Service B Service C Service

19

Network communication

* gives you sockets that carry whole messages across various
transports

* You can connect sockets N-to-N with communication patterns

Multithreading

 Communication inside your host process

* we don't need mutexes, locks, or any other form of inter-thread
communication except messages sent across @MQ sockets

20

Different Transports

* INPROC:

* In-process transport
* passes messages via memory directly between threads

* IPC

* Inter-process transport

. passgs messages between local processes using a system-dependent IPC
mechanism

« TCP

 ubiquitous, reliable unicast transport

* PGM/EPGM

 protocol for reliable multicast transport of data over IP networks

21

Basic Buiding Blocks

Socket types Messaging patterns

e Push * Pipeline

e Pull

* Pub * Publisher — Subscriber
e Sub

* Req * Request - Reply

* Rep

* Router

e Dealer (Exclusive pair)

Load Balancer

Client

Client Client

~ LS

Server

i
— .

Thre%d Pool

Worker

Worker Worker

23

Demo: “Simple” Load Balancer

Client Client Client
REQ REQ REQ
TCP
ROUTER
Broker
DEALER
Inproc
REP REP REP
Worker Worker Worker

24

"Better” Load Balancer

Client Client Client
REQ REQ REQ
TCP
ROUTER
Broker
ROUTER
Inproc
REQ REQ REQ
Worker Worker Worker

25

Publish - Subscribe with Snapshot

APPL: 585
GOOG: 518

Server
| PUB | REP ‘

SUB | REQ SUB | REQ 'SUB REQ‘
Client Client Client

APPL: 585 APPL: 585
GOOG: 518 GOOG: 518

Publish-subscribe with snapshot and update

Chairs: 200

Tables: 31

Server

PULL

/X

PUSH

SUB REQ PUSH PUSH
Client Client
Chairs: 200 Chairs: 200
Tables: 31 Tables: 31

Client

27

Reliability?

* Reliability
 Crash of server
 Crash of client
Unreliable network
Slow performance
Hardware can fail
Data centers can be struck by lightning, fire etc.
Informing user about disconnects

 How does it ZeroMqg handle?

28

Reliability

» ZeroMQ does not handle all error cases but provides some tools for
building reliability

* The level of reliability depends on the use-case

* Solutions

* Retry on time-out

* Heart beating

 Limit on used resources
ldempotent

Lazy Pirate Pattern

Server

Client Client Client
Retry Retry Retry
REQ REQ REQ

REP

30

Reliability: Slow subscriber

Pub

N

Sub

* What happens if there is a slow subscriber?

* Queue messages on the publisher?

* Queue messages on the subscriber?
 Stop queuing new messages after a while?
* Punish slow subscribers with disconnect?

31

Suicidal snail

* Subscriber receives messages from publisher
* Subscriber detects if it is receiving messages too slow

* If it receives too slow then it kills itself and thereby stop receiving
messages

32

High water mark

* A way of dealing with over-full queues

* When a queue is full (reach it water mark) then it throws away new
messages (or blocks sender)

* This means that queues will only contain a predefined amount of
data

* However dropping messages might result in lost data

33

How to: Suicidal snail

* Put a high water mark on the publisher send queue
* Put a high water mark on the subscriber receive queue

* Sequence number on all messages being send

* When the subscriber receives the messages then it checks if the
sequence numbers are consecutive

* If they are not consecutive then messages has been lost because hitting the
high water
» The subscriber kills itself when messages are not consecutive

34

More reliability patterns

* Binary Star

* Paranoide Pirate
* Simple Pirate

* Majordomo

* Titanic

* Freelance

35

Performance

* Throughput
* Latency

36

Performance

Model: Lenovo Z510

Operating System: Microsoft Windows 8.1
- Version: 6.3.9600

Network
- Realtek RTL8102E Family PCI-E Fast Ethernet (10/100MBit)

Number of Processors: 1
- Name: Intel 4 Core i7-4702MQ CPU @ 2.20GHz

Ram
-16 GB

37

Remote: Messages per second

10000000 1B
8B

64 B
5128
4 kB
32kB
128 kB
512 kB
2 MB
8 MB

1000000

100000

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

3562066
1176237
178276,2
22323,69
2841,988
359,1445
86,9327
22,3024
5,752958
1,544604

38

Remote: Mega bit per second

1B
8B
64 B
5128
4 kB
32kB
128 kB
512 kB
2 MB
8 MB

100000 1000000 10000000

28,49652
75,27916
91,27742
91,43782
93,12627
94,14759
91,15555
93,54304
96,51862
103,6566

39

Remote: Latency (ps)

1000000

100000

10000

100000

1000000

10000000

1B
8B
64 B
5128
4 kB
32kB
128 kB
512 kB
2 MB
8 MB

399,9246
404,4727
377,3626

562,872
1073,362
3668,614
12305,67

47084,2
186710,4
742378,3

40

Localhost: Messages per second

10000000
1B
8B
1000000 64 B
512B
4kB
32kB
128 kB
512 kB
2 MB
8 MB

100000

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

4138129
4197820
2392897
819342
150987
16160
5405
1374
327

78

41

Localhost: Mega bit per second

1B
8B
64 B
5128
4 kB
32kB
128 kB
512 kB
2 MB
8 MB

10000 100000 1000000 10000000

33
268
1225
3356
4947
4236
5667
5762
5486
5234

42

Localhost: Latency (ps)

10000

100000

1000000

10000000

8

64

512
4096
32768
131072
524288
2097152
8388608

41,23854
42,54664
52,48148
89,02846
275,2133
1264,997
1888,259

5531,39
25366,24

43

Why ZeroMQ

* Open source
 LGPL
* Big active community

* High Performance
* Send millions of messages per second

* "Easy” to use, integrate
* Pleasure to code

* Flexible
 Able to create all kinds of distributed systems

* Low running cost

44

Why not ZeroMQ

* Not a widely used protocol
* S0 maybe not so good for public APIs as for example REST

* Custom protocols
* E.g. cannot implement a web server

* Complexity

* Other communication frameworks exists for specific purposes
* Web services

* Message queue
* ESB

45

Refferences

* http://zeromq.org/

* http://zquide.zeromg.org
* Good guide to ZeroMQ

* https://github.com/zeromq/clrzmqg
* .Net binding

* http://pluralsight.com
» ZeroMQ: Messaging for Many Applications

46

http://zguide.zeromq.org/
http://zguide.zeromq.org/
https://github.com/zeromq/clrzmq
http://pluralsight.com/

Contact us

* Comiit ApS
 Vesterbro Torv 1-3, 3rd floor, Aarhus (with reqular Friday bar full of geeks ;)
* Www.comiit.com
* http://www.bigdatadenmark.dk

* Vladimir Smida

» vladimir@comiit.com
 https://www.linkedin.com/in/vsmida

* Rasmus Nygaard Andersen
* rasmus@comiit.com
* https://www.linkedin.com/in/rasmusnygaardandersen

47

http://www.comiit.com/
http://www.bigdatadenmark.dk/
mailto:vladimir@comiit.com
https://www.linkedin.com/in/vsmida
mailto:rasmus@comiit.com
https://www.linkedin.com/in/rasmusnygaardandersen

