
Simon Brown
@simonbrown

The Art of Visualising
Software Architecture

“ ”
…the architecture

diagrams don’t
match the code

Jersey

Jersey

Jersey

I help software teams understand

software architecture,

technical leadership and

the balance with agility

Software architecture
needs to be more

accessible

Free!

I code too
⇧ ; - ⇧ 0

The problem

“Design a solution
& draw some
pictures to
describe it”

1. Context
A global investment bank based in London, New York and Singapore trades (buys and sells) financial
products with other banks (“counterparties"). When share prices on the stock markets move up or down,
the bank either makes money or loses it. At the end of the working day, the bank needs to gain a view of
how much risk of losing money they are exposed to, by running some calculations on the data held about
their trades. The bank has an existing Trade Data System (TDS) and Reference Data System (RDS) but
needs a new Risk System.

1.1. Trade Data System
The Trade Data System maintains a store of all trades made by the bank. It is already configured to
generate a file-based XML export of trade data to a network share at the close of business (5pm) in New
York. The export includes the following information for every trade made by the bank:

• Trade ID, Date, Current trade value in US dollars, Counterparty ID

1.2. Reference Data System
The Reference Data System stores all of the reference data needed by the bank. This includes information
about counterparties (other banks). A file-based XML export is also generated to a network share at 5pm in
New York, and it includes some basic information about each counterparty. A new reference data system is
due for completion in the next 3 months, and the current system will eventually be decommissioned. The
current data export includes:

• Counterparty ID, Name, Address, etc…

2. Functional Requirements
1. Import trade data from the Trade Data System.
2. Import counterparty data from the Reference Data System.
3. Join the two sets of data together, enriching the trade data with information about the

counterparty.
4. For each counterparty, calculate the risk that the bank is exposed to.
5. Generate a report that can be imported into Microsoft Excel containing the risk figures for all

counterparties known by the bank.
6. Distribute the report to the business users before the start of the next trading day (9am) in

Singapore.
7. Provide a way for a subset of the business users to configure and maintain the external parameters

used by the risk calculations.

 

“Financial Risk System” architecture kata

Simon Brown | @simonbrown

Financial Risk System

Abstraction
is about reducing detail
rather than creating a different representation

The Shopping List

Boxes & No Lines

The Functional View

Stormtroopers

The Airline Route Map

Generically True

The Logical View

Missing technology details

Deployment vs Execution Context

Homeless Old C# Object (HOCO)

Choose your own adventure

Should have used a whiteboard!

Eh?

What’s been
challenging about

the exercise?

People expect to present their designs and therefore
information is still

stuck in their heads

10111010101
10100110111
10111010100
10101011011

The diagram
isn’t self-evident,
but we’ll explain it

Review the diagrams

3 things we like

about the diagrams 3 things we think would
improve the diagrams

3 things we like
about the diagrams
3 things we like

about the diagrams

3 things we think would improve the diagrams

3 things we think would

improve the diagrams

(focus on the communication of the solution
rather than the solution itself)

Who here uses UML

on a regular basis?

9 out of 10 people

don’t use UML
(in my experience)

I do use UML
(activity, class, sequence, collaboration, state)

In my experience,
software teams
aren’t able to

effectively
visualise the

software
architecture

of their systems

We can visualise our process...

...but not our
software!

Moving fast
requires

good
communication

Notation

Some tips for

effective sketches

Titles
Short and meaningful, numbered if

diagram order is important

Lines
Make line style and arrows explicit,
add annotations to lines to provide

additional information

Layout
Sticky notes and index cards make a

great substitute for drawn boxes,
especially early on

Some tips for

effective sketches

Titles
Short and meaningful, numbered if

diagram order is important

Lines
Make line style and arrows explicit,
add annotations to lines to provide

additional information

Layout
Sticky notes and index cards make a

great substitute for drawn boxes,
especially early on

Labels
Be wary of using acronyms

Colour
Ensure that colour coding

is made explicit

Orientation
Users at the top and database at the
bottom? Or perhaps “upside-down”?

Shapes
Don’t assume that people will

understand what different shapes
are being used for

Keys
Explain shapes, lines, colours,

borders, acronyms, etc

Responsibilities
Adding responsibilities to boxes can
provide a nice “at a glance” view

(Miller’s Law; 7±2)

Content

It’s usually difficult to
show the entire design on

a single diagram

Different views of
the design can be used to
manage complexity and

highlight different
aspects of the solution

Software architecture deals with
abstraction, with decomposition and

composition, with style and esthetics.

To describe a software
architecture, we use a

model composed of multiple
views or perspectives.

Architectural Blueprints—The “4+1” View Model of Software Architecture
by Philippe Kruchten

Viewpoints
and

perspectives

Do the names
of those views make sense?

Development vs Physical
Process vs Functional
Conceptual vs Logical

Development vs Implementation
Physical vs Implementation

Physical vs Deployment

Why is there a

separation
between the logical and

development views?

“the model-code gap”

Do the diagrams reflect the

code?

As an industry, we lack a
common vocabulary

with which to think about, describe
and communicate software architecture

A software system is made up of one or more containers,

each of which contains one or more components,

which in turn are implemented by one or more classes.

Class Class Class

Component Component Component

Container
(e.g. web application, application server, standalone application,

browser, database, file system, etc)

Container
(e.g. web application, application server, standalone application,

browser, database, file system, etc)

Container
, application server, standalone application,

browser, database, file system, etc)

Software System

Static
model

(software systems,
containers, components

and classes)

Runtime and
behaviour

(sequence and collaboration
diagrams of elements in the

static model)

Deployment
(mapping of containers

to infrastructure)

Business process
and workflow

Infrastructure
(physical, virtual,

containerised hardware;
firewalls, routers, etc)

Data
(entity relationship

diagrams)
etc…

The C4 model

Classes (or Code)
Component implementation details

System Context
The system plus users and system dependencies

Containers
The overall shape of the architecture and technology choices

Components
Components and their interactions within a container

Diagrams are maps
that help a team navigate a complex codebase

Think about the

target
audience

Non-technical Semi-technical Very technical

A common set of
abstractions

is more important than
a common notation

techtribes.je

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

A simple notation
(whiteboard and sticky note friendly,
supplemented with colour coding)

techtribes.je
[Software System]

techtribes.je is the only way to keep up to
date with the IT, tech and digital sector in

Jersey and Guernsey, Channel Islands.

Anonymous User
[Person]

Anybody on the web.

Twitter Connector
[Component: Spring Bean + Twitter4j]

Retrieves profile information and tweets
(using the REST and Streaming APIs).

Web Application
[Container: Apache Tomcat 7.x]

Allows users to view people, tribes, content,
events, jobs, etc from the local tech, digital

and IT sector.

Shapes and colour can add an additional layer of information

C4++
Enterprise context

User interface mockups and wireframes
Domain model

Sequence and collaboration diagrams
Business process and workflow models

Infrastructure model
Deployment model

...

4+1 architectural view model

Philippe Kruchten

Software Systems Architecture
Working with Stakeholders Using

Viewpoints and Perspectives (2nd Edition)

Nick Rozanski and Eoin Woods

C4 is not a
design process

Up front design
vs

retrospectively
drawing diagrams

Tooling

http://quora.com/Whats-the-easiest-solution-to-
create-software-architecture-diagrams

Any general purpose diagramming tool can
be used to create software architecture diagrams

Do building architects
use Microsoft Visio?

Sketches get out of date,
so why not

auto-generate
the diagrams?

Spring PetClinic
https://github.com/spring-projects/spring-petclinic/

3-profiles-
jdbc-

default-(JPA)-
Spring-Data-JPA-

Repository

Service @Cacheable-
@TransacGonal-

Controller
Bean-ValidaGon-

Spring-@MVC-annotaGons-

Views

Bootstrap-(CSS)-

JSP-with--
custom-tags- Thymeleaf-

Dandelion-webjars-

| |

&& && +

https://speakerdeck.com/michaelisvy/
spring-petclinic-sample-application

An auto-generated UML class diagram

Diagramming tools see

code
rather than components

What is a

“component”?

What are the
architecturally

significant
elements?

A UML class diagram showing
architecturally significant elements

A component
diagram,

based upon
the code

The code is the

embodiment
of the architecture

In practice, architecture is

embodied and recoverable
from code, and many

languages provide architecture-
level views of the system.

A Survey of Architecture Description Languages
by Paul C. Clements

Is the architecture
in the code?

Context

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

Containers

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

Components

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

“architecturally-evident
coding style”

Architecturally-evident
coding styles include:

Annotations/attributes (@Component, [Component], etc)

Naming conventions (*Service)

Namespacing/packaging
(com.mycompany.system.components.*)

Maven modules, OSGi modules, Java 9 and
Jigsaw, JavaScript module patterns,

ECMAScript 6 modules, microservices, etc

Extract as much of the software
architecture from the code as possible,

and supplement
where necessary

Create an architecture
description language

using code

Structurizr for Java
Structurizr for .NET

GOTO Copenhagen 2016
(promotional code for 1 month free Enterprise Plan; use by 15th April 2016)

What is Structurizr?

Spring PetClinic
https://github.com/spring-projects/spring-petclinic/

3-profiles-
jdbc-

default-(JPA)-
Spring-Data-JPA-

Repository

Service @Cacheable-
@TransacGonal-

Controller
Bean-ValidaGon-

Spring-@MVC-annotaGons-

Views

Bootstrap-(CSS)-

JSP-with--
custom-tags- Thymeleaf-

Dandelion-webjars-

| |

&& && +

https://speakerdeck.com/michaelisvy/
spring-petclinic-sample-application

“Component Finder”
with pluggable strategies,

implemented using
reflection & static analysis

(e.g. Java Annotations, .NET Attributes,
type name ends with “Controller”,

type extends class X, type implements interface Y,
supplement model with type-level comments

from source code, etc)

Spring PetClinic
- Web Application

- Components

Navigate from diagram to source code

Diagrams are maps

Creating the model as code provides opportunities…

Once you have a model,
you can export that

model and visualise it
however you like…

Build pipeline
integration keeps

software architecture
models up-to-date

Visualising software architecture is still very much an art,
but it’s 2016 and time to stop using tools like Microsoft Visio!

From static diagrams to
maps of the code

Thanks!
simon.brown@codingthearchitecture.com

@simonbrown on Twitter

