
SIMPLICITY: THE WAY OF THE
UNUSUAL ARCHITECT

Dan North

Dan North & Associates!

In the beginning...
...the software was without form, and void

The Architects said “Let there be light,” and

they separated the light from the darkness

And they called the light Architecture and the

darkness Hacking

And that was the first project

@tastapod	

On the second project...
The Architects used all the technologies of the

heavens and the earth they hadn’t got round
to the first time

The simple new() was replaced by a Factory
-  which was replaced by Dependency Injection
-  which was replaced by an IoC Container
-  which was augmented by XML configuration
-  which was supplemented by @nnotations

@tastapod	

But they were not done yet...

The simple save() was replaced by a DAO
-  which was replaced by a Unit of Work pattern
-  which was replaced by a custom ORM
-  which was replaced by Hibernate

-  which is called NHibernate by the Redmondites
-  which was (partly) replaced by iBatis
-  which was replaced by EJB 3
-  which was (not) replaced by Active Record

@tastapod	

And still they toiled...
The simple compile was replaced by a Makefile
-  which was replaced by an Ant build.xml

-  which is called NAnt by the Redmondites
-  which was replaced by many build.xml files
-  which were generated by an XSLT transform
-  which was replaced by Maven

And Maven brought forth a Plague of Apache Commons,
and there was a flood of all the Libraries of the Internet
as a judgement upon the people

And that was the Second System

@tastapod	

Architects were fruitful and
multiplied

They decided to build an Architecture that would reach to
the heavens, to show how clever and wise they were,
and remote invocation would be its name

But it came to pass that they were scattered to the four

winds and began to speak in different tongues

Some spoke in CORBA, which was called DCOM by the

Redmondites. The Sunnites spoke the language of
JNDI, of the EJBites, which was XMLish and verbose

And there was a plague of standards to test the people

@tastapod	

These are the generations of RPC

RPC begat RMI
-  which begat COM and Object Brokers
COM begat DCOM, which begat WCF
Object Brokers begat Web Services
Web Services married XML
-  and they begat SOAP and WSDL
SOAP begat the twelve (hundred) tribes of WS-*
WSDL begat Code Generated Stubs

And the people wrung their hands and wept

@tastapod	

On the seventh day they
RESTed

@tastapod	

The	
 same	
 story	
 happens	
 over	
 and	
 over	

1.  We	
 observe	
 a	
 pa5ern	

2.  We	
 create	
 abstrac8ons	
 and	
 generalisa8ons	

3.  We	
 turn	
 the	
 abstrac8ons	
 into	
 a	
 framework	

4.  The	
 framework	
 becomes	
 a	
 Golden	
 Hammer	

5.  People	
 start	
 to	
 subvert	
 the	
 framework	

6.  Finally,	
 some8mes,	
 simplicity	
 grows	
 out	
 of	
 adversity	

	

Why	
 do	
 we	
 keep	
 doing	
 this?	

@tastapod	

This	
 is	
 a	
 pair	
 of	
 three-­‐quarter	
 circles	

@tastapod	

h5p://www.flickr.com/photos/davidjoyner/2491859887/	

We	
 are	
 programmed	
 to	
 see	
 structure	

...even	
 where	
 none	
 exist	

	

	

We	
 distort,	
 delete	
 and	
 generalise	

	

	

We	
 complify	
 where	
 we	
 should	
 simplicate	

@tastapod	

“If	
 I	
 were	
 going	
 to	
 Dublin...”	

Try	
 to	
 see	
 what	
 is	
 really	
 there	

Ask:	
 What	
 is	
 actually	
 slowing	
 me	
 down?	

	

Get	
 a	
 pair,	
 or	
 a	
 bath	
 duck	

	

“I	
 would	
 not	
 give	
 a	
 fig	
 for	
 the	
 simplicity	
 this	
 side	
 of	

complexity,	
 but	
 I	
 would	
 give	
 my	
 life	
 for	
 the	

simplicity	
 on	
 the	
 other	
 side	
 of	
 complexity.”	

– Oliver	
 Wendell	
 Holmes	

	
 @tastapod	

Thank	
 you	

dan@dannorth.net	

h5p://dannorth.net	

@tastapod	

@tastapod	

h5p://www.flickr.com/photos/nicksieger/281055485/	
 h5p://www.flickr.com/photos/nicksieger/280661836/	

@tastapod	

Hard	
 Things	
 Made	
 Easy	

Bo2leneck	
 Analysis

Adrian Cockcroft

@adrianco

Netflix Inc.!

Code	
 Like	
 a	
 Viking	
 Pirate	
 -­‐	
 Arrrrr	

beer	
 <-­‐	
 read.csv(url("h5p://beer.ne\lix.com/
net?a=csv&gr=beer_opera8ons&s=e-­‐4d"))	

	

response	
 <-­‐	
 beer[,1]	

	

plot(response,	
 type="S",ylab=”response”)	

	

Hard	
 Stuff	

> summary(response)!
 Min. 1st Qu. Median Mean 3rd Qu. Max. !
 1.909 2.550 2.820 3.086 3.214 67.680 !
> quantile(response,c(0.95,0.99))!
 95% 99% !
4.149556 6.922115!
> sd(response)!
 1.941328!
> mean(response) + 2 * sd(response)!
 6.968416!

Made	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Easy	

chp(beer[,1],beer[,2],q=1.0)	

	

	

	

	

(See	
 h5p://perfcap.blogspot.com/search?q=chp)	

	

	
 Scalability	
 plots	
 generated	
 using	
 appdynamics.com	

Well	
 behaved	
 Lock	
 Conten8on	

Oscilla8ng,	
 thread	
 shortage	

Looping	
 autoscaled	

Hard	

Things	

Made	

Easy	

@tastapod	

Sadek Drobi
@sadache

Monads

 An interface

Shared Semantics

Familiar, ready and operational

What is a Monad

An interface

Shared Semantics

An Implementation

What is a Monad

A Container

What is a Monad

A Container of `a`

If we have

A Container of `a`

a

If we have

A List of `a`

a

If we have

An Option of `a`

a

If we have

A Tree of `a`

a

If we have

A Future of `a`

a

And I know how to transform

a b

Provided that, it could be nice if

a b
A Container of `a`

a

_if the container implements a way of getting a container of
`b`, handling all the necessary plumbing

b

Interesting!

i "wow, got a " + i
A List of Int

Int

What do we get?

Interesting!

i "That is, " + i
A List of Int

Int

What do we get?

bString

A List of String

Interesting!

i "That is, " + i
An Option of Int

Int

What do we get?

bString

An Option of
String

Interesting!

i "That is, " + i
A Future of Int

Int

What do we get?

bString

An Future of
String

That is a Functor!

i "That is, " + i
A Future of Int

Int

What do we get?

bString

An Future of
String

Functor interface

trait Functor[M[_]] {

 def map[A,B](ma:M[A], f: A => B): M[B]

}

As a Functor interface implementer
(API designer)

object ListFunctor extends Functor[List] {

 def map[A,B](ma:List[A], f: A => B): List[B] =
 // apply the function to all elements and

 // return a new list with results

}

As a Developer

Use map as much as you want to transform what is
inside the container

Until, you run into a problem!

a
A Container of `a`

a

What do we get with a Functor?

b

Until, you run into a problem!

a
A Container of `a`

a

What do we get with a Functor?

b

b

That is not nice

a
A Container of `a`

a

What do we get with a Functor?

b

b

That is not nice

a
A List of `a`

a

What do we get with a Functor?

b

b

A List of Lists of
`a`

That is not nice

a
An Option of `a`

a

What do we get with a Functor?

b

b

An Option of Option of
`a`

How nice would it be if,

a
A List of `a`

a

_if we could get this instead,
flattening the container!

b

b

A List of
`a`

And we get the Monad!

a
A List of `a`

a

_if we could get this instead,
flattening the container!

b

b

A List of
`a`

Monad interface

trait Monad[M[_]] {

 def map[A,B](ma: M[A], f: A => B): M[B]

 def flatMap[A,B](ma: M[A], f: A => M[B]): M[B]

}

Almost!

Almost!

Some properties are not guaranteed with the structure,
you need to validate some laws

Left identity, Right Identity and Associativity

Category theory?

No more than a formal foundation that things won't go
wrong with your monad implementation if you get the

structure and the laws right

And that looks reassuring.

