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Warning!

e This is a technical talk
e But MongoDB is very simple!
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Solving real world data
problems with MongoDB

e Effective schema design for scaling
e Linking versus embedding
e Bucketing
e Time series
e Implications of sharding keys with alternatives
e Read scaling through replication
e Challenges of eventual consistency
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A quick word from MongoDB
sponsors, 10gen

* Founded in 2007 Set the Foster
 Dwight Merriman, Eliot Horowitz direction & community
» S73M+ in funding contribute &
- Flybridge, Sequoia, Union Square, NE code to ecosystem
» Worldwide Expanding Team | MongoDB
* 170+ employees
* NY, CA, UK and Australia

Provide Provide
MongoDB MongoDB

cloud support

services services
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Since the dawn of the RDBMS

Main memory Intel 1103, 1k bits 4GB of RAM costs
$25.99

Mass storage IBM 3330 Model 1, 100 MB 3TB Superspeed USB
for $129

Microprocessor Nearly - 4004 being Westmere EX has 10
developed; 4 bits and cores, 30MB L3 cache,
92,000 instructions per runs at 2.4GHz
second
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More recent changes

Faster Buy a bigger server  Buy more servers

Faster storage A SAN with more SSD
spindles

More reliable storage More expensive SAN More copies of local
storage

Deployed in Your data center The cloud - private or
public

Large data set Millions of rows Billions to trillions of
rows

Development Waterfall lterative
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Is Scaleout Mission Impossible?

» What about the CAP Theorem?
o Brewer's theorem
» Consistency, Availability, Partition Tolerance

o |t says if a distributed system is partitioned, you can’t
be able to update everywhere and have consistency

» So, either allow inconsistency or limit where updates
can be applied
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What MongoDB solves

Applications store complex data that is easier to
model as documents
Schemaless DB enables faster development cycles

Relaxed transactional semantics enable easy scale
out
Auto Sharding for scale down and scale up

Cost effective operationalize abundant data
(clickstreams, logs, tweets, ...)
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Design Goal of MongoDB

e memcached

e key/value mongoDB
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Schema Design at Scale
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Designh Schema for Twitter

e Model each users activity stream
e Users

e Name, email address, display name
e Tweets

o [ext
e Who

e Timestamp
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Solution A
Two Collections - Normalized

// users — one doc per user
{ : "alvin",
"alvin@l@gen.com",
: ""jonnyeight"
s

// tweets - one doc per user per tweet
{
. "bOb",
: '20111209-1231",
"Best Tweet Ever!",
ISODate("2011-09-18T09:56:06.2987")
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Solution B
Embedded - Array of Objects

// users — one doc per user with all tweets
{ : "alvin",
"alvin@l@gen.com",
: ""jonnyeight",

:  "bob",

: '"20111209-1231",
"Best Tweet Ever!",
ISODate("2011-09-18T09:56:06.2987")

108en | i



Embedding

e Great for read performance
e One seek to load entire object
e One roundtrip to database

e Object grows over time when adding child objects
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Linking or Embedding?

Linking can make some queries easy

// Find latest 50 tweets for "alvin"
> db.tweets.find( { : "alvin" } )
.sort( { : =1 } )
. 1limit(10)

But what effect does this have on the systems?
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Collection |
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Collection |

This is your virtual
memory size

(mapped)
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Collection |

Physical
RAM

-

This is your
— resident
memory size

\

the
10g8en | i
company






Collection |

100 ns

10,000,000 ns
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Collection |

Index |

db.tweets.find( {
.sort( {
. limit(10)
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: -1 } )
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Collection |

Physical
RAM
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db.tweets.find( { : ' )
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Problems

e Large sequential reads
e Good: Disks are great at Sequential reads
e Bad: May read too much data

e Many Random reads
e Good: Easy of query
e Bad: Disks are poor at Random reads (SSD?)
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Solution C
Buckets

// tweets : one doc per user per day
> db.tweets.findOne()

{
"alvin-2011/12/09",
"alvin@l@gen.com",

|
. "BOb",
: '"20111209-1231",
"Best Tweet Ever!" } ,
. ||J0e|| ,
"May 27 2011",
"Stuck in traffic (again)" }
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Solution C
Last 10 Tweets

// Get the latest bucket, slice the last 10 tweets

db.tweets.find( { : "alvin-2011/12/09" },
{ r : 10 } )
.sort( { : -1 } )
limit(1)
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Collection |

Physical
RAM

db.tweets.find( {

{
.sort( {
limit (1)
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Sharding - Goals

Data location transparent to your code
Data distribution is automatic

Data re-distribution is automatic
Aggregate system resources horizontally
No code changes
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Sharding - Range distribution
—_—

sh.shardCollection("test.tweets", { id: 1} , false)

shardOl " shard02 | " shard03

\ S
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Sharding - Range distribution

shard02 | " shard03
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Sharding - Splits

" shard02 |

" shard03 |




Sharding - Splits

" shard02 |

" shard03 |




Sharding - Auto Balancing

" shard02 |

" shard03 |




Sharding - Auto Balancing

" shard02 |

" shard03 |
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How does sharding effect

Schema Design?

e Sharding key choice
e Access patterns (query versus write)
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Sharding Key

{ S Y i Y : <binary> }

e What’s the right key?
e auto increment
e MD5( data )
e month() + MD5( data )
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Right balanced access

e Only have to keep small

portion in ram e Time Based
e Right shard "hot" e Objectld

e Auto Increment
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Random access

e Have to keep entire
index in ram
e All shards "warm"
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Segmented access

e Have to keep some
index in ram
e Some shards "warm"

e Month + Hash
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Solution A
Shard by a single identifier

{ : "alvin", // shard key
"alvin@l@gen.com",
"jonnyeight"
"alvin.j.richards",
[ ... 1]
s

Shard on { : 1}
Lookup by routed to 1 node
Index on { “ "1}
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Sharding - Routed Query
find( { id: "alvin"} )

" shardol | [ shardo2 ) [ shard03
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Sharding - Routed Query
find( { id: "alvin"} )

" shardol ) ( shardo2 ) [ shard03

\ J

\_ )
the
108en | ix:
company



Sharding - Scatter Gather
find( { email: "alvin@l@gen.com" } )
é

" shardol | [ shardo2 ) [ shard03
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Sharding - Scatter Gather
find( { email: "alvin@l@gen.com" } )
é

" shardol | [ shardo2 ) [ shard03
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Multiple Identities

e User can have multiple identities
e twitter name
e email address
e etcC.

eWhat is the best sharding key & schema design?
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Solution B
Shard by multiple identifiers

ldentities

{ = : "alvin", : ""'1200-42"}

{ : "em", : "alvin@l@gen.com" : ""'1200-42"}
=S | : "alvin.j.richards'|, : ""1200-42"}

e Shard identities on { 1, 1}
e Lookup by & routed to 1 node
e Can create unique index on &

e Shard info on { 1}

e Lookup info on routed to 1 node
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Shardmg Routed Query

" shard02 |

" shard03 |




Sharding - Routed Query

find( { type: "em",

Oy —_—) ’ val: "alvin@l@gen.com } )

A d R

shardol ) [ shard02 shard03

J
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Sharding - Routed Query

find( { type: "em",

Oy —_—) ’ val: "alvin@l@gen.com } )

find( { _id: "1200-42" } )

A d R

shardOl " sha~d02 shard03

J
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Sharding - Caching
e ———

96 GB Mem

300 GB Data

compan



Aggregate Horizontal Resources

—_—

96 GB Mem 96 GB Mem 96 GB Mem
|:]1 Data/Mem I:]1 Data/Mem |:] Data/Mem
H H

shard02 | " shard03

300 GB Data
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Auto Sharding - Summary

e Fully consistent

e Application code unaware of data location
e Zero code changes

e Shard by Compound Key, Tag, Hash (2.4)

e Add capacity

e On-line
e When needed
e Zero downtime
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Time Series Data

e Records votes by

e Day, Hour, Minute
e Show time series of votes cast
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Solution A
Time Series

// Time series buckets, hour and minute sub-docs
{ : '"20111209-1231",
ISODate('"2011-12-09T00:00:00.000Z7")
: 6/,
: { 0: 3
: { 0: 0,

// Add one to the last minute before midnight
> db.votes.update(
{ : '"'20111209-1231",
: ISODate("2011-12-09T00:00:00.037Z") 1},
{ : _{ 11 II: 1 }’
: _{ 11 II: 1 }’
: { 11 II: 1 } } )
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BSON Storage

e Sequence of key/value pairs
e NOT a hash map
e Optimized to scan quickly

0 [1{2]3|[1439

What is the cost of update the minute
before midnight?
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BSON Storage

e Can skip sub-documents

0 [——

How could this change the schema?
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Solution B
Time Series

// Time series buckets, each hour a sub-document
{ : '"20111209-1231",
ISODate('"2011-12-09T00:00:00.000Z7")
: 6/,
: {0o: {0:0, 1: 7, ... = 2},

s 5

// Add one to the last second before midnight
> db.votes.update(
{ : ""20111209-1231" },
: ISODate("2011-12-09T00:00:00.000Z") I,
{ . _{ 1] ||: 1 }’
: { : 1} })
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Replica Sets

e Data Protection
e Multiple copies of the data

e Spread across Data Centers, AZs
e High Availability

e Automated Failover
e Automated Recovery
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Replica Sets

Asynchronous
Replication
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Replica Sets




Replica Sets

Automatic Election of
new Primary
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Replica Sets

New primary serves




Replica Sets




Replica Sets - Summary

e Data Protection

e High Availability

e Scaling eventual consistent reads
e Source to feed other systems

e Backups
e Indexes (Solr etc.)
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Types of Durability with
MongoDB

 Fire and forget

o Wait for error

e Wait for fsync

e Wait for journal sync
» Wait for replication
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Least durability - Don't use!

apply in memory

the
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More durability

write

getLastError
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Durability Summary Other Data

Memory Journal Secondary Center
|

RDBMS

Default
"Fire & Forget:

w=|

w=|
j=true

w="majority"
w=n

w="myTag"

Less
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Eventual Consistency

Using Replicas for Reads

slaveOk()

e driver will send read requests to Secondaries
e driver will always send writes to Primary

Java examples
e DB.slaveOk()

e Collection.slaveOk()
e find(qg).addOption(Bytes.QUERYOPTION SLAVEOK);
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Understanding Eventual
Consistency

Insert Read Update

#1

4 4
4 4

Primary —6———6——}
108en | i




Understanding Eventual vl not

Consistency present

Application Read Read R &ic Reads

#2 vl

Application
#1
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Product & Roadmap
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The Evolution of MongoDB

1.8 2.0 2.2 2.4
March “I | Sept ‘I | Aug ‘12 winter ‘12

Journaling Index enhancements Aggregation
to improve size and Framework
performance

Sharding and
Replica set Multi-Data Center
enhancements Authentication with Deployments

Spherical geo sharded clusters Improved

search Replica Set Performance and
Enhancements Concurrency

Concurrency
improvements
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