- mongoDB

Scaling for Humongous amounts of
data with MongoDB

Alvin Richards

Technical Director, EMEA
alvin@1l0gen.com

@jonnyeight
alvinonmongodb.com

10g8en | s

From here...

the
ey http://bit.ly/OT7 | M4

...to here...

:
"y

lv(u' f ”'- /| "..'
"‘Il‘ /1

S

NS

AN

the
2)?1?33%8 http://bit.ly/Oxcsis

..without one of these.

the
1 0 ge n ey http://bit ly/cnP77L

Warning!

e This is a technical talk
e But MongoDB is very simple!

STAVBA =~
NEPOVOLANYM M
STUP ZAKAZAN 28

- B

108en | i

Solving real world data
problems with MongoDB

e Effective schema design for scaling
e Linking versus embedding
e Bucketing
e Time series
e Implications of sharding keys with alternatives
e Read scaling through replication
e Challenges of eventual consistency

the
108en | &
company

A quick word from MongoDB
sponsors, 10gen

* Founded in 2007 Set the Foster
 Dwight Merriman, Eliot Horowitz direction & community
» S73M+ in funding contribute &
- Flybridge, Sequoia, Union Square, NE code to ecosystem
» Worldwide Expanding Team | MongoDB
* 170+ employees
* NY, CA, UK and Australia

Provide Provide
MongoDB MongoDB

cloud support

services services

the
108en | i
company

Since the dawn of the RDBMS

Main memory Intel 1103, 1k bits 4GB of RAM costs
$25.99

Mass storage IBM 3330 Model 1, 100 MB 3TB Superspeed USB
for $129

Microprocessor Nearly - 4004 being Westmere EX has 10
developed; 4 bits and cores, 30MB L3 cache,
92,000 instructions per runs at 2.4GHz
second

108en | i

More recent changes

Faster Buy a bigger server Buy more servers

Faster storage A SAN with more SSD
spindles

More reliable storage More expensive SAN More copies of local
storage

Deployed in Your data center The cloud - private or
public

Large data set Millions of rows Billions to trillions of
rows

Development Waterfall lterative

108en | i

http://bit.ly/Qmg8YD

Is Scaleout Mission Impossible?

» What about the CAP Theorem?
o Brewer's theorem
» Consistency, Availability, Partition Tolerance

o |t says if a distributed system is partitioned, you can’t
be able to update everywhere and have consistency

» So, either allow inconsistency or limit where updates
can be applied

the
108en | i
company

What MongoDB solves

Applications store complex data that is easier to
model as documents
Schemaless DB enables faster development cycles

Relaxed transactional semantics enable easy scale
out
Auto Sharding for scale down and scale up

Cost effective operationalize abundant data
(clickstreams, logs, tweets, ...)

10gen | s

Design Goal of MongoDB

e memcached

e key/value mongoDB

(D,
O
-
(gv]
&
—
o
—
—
(),
Q.
od
>~
b
5
©
(gv]
O
Vg

10gen Vongope depth of functionality

Schema Design at Scale

the
108en |
company

Designh Schema for Twitter

e Model each users activity stream
e Users

e Name, email address, display name
e Tweets

o [ext
e Who

e Timestamp

the
108en | i
company

Solution A
Two Collections - Normalized

// users — one doc per user
{ : "alvin",
"alvin@l@gen.com",
: ""jonnyeight"
s

// tweets - one doc per user per tweet
{
. "bOb",
: '20111209-1231",
"Best Tweet Ever!",
ISODate("2011-09-18T09:56:06.2987")

the
108en | &
company

Solution B
Embedded - Array of Objects

// users — one doc per user with all tweets
{ : "alvin",
"alvin@l@gen.com",
: ""jonnyeight",

: "bob",

: '"20111209-1231",
"Best Tweet Ever!",
ISODate("2011-09-18T09:56:06.2987")

108en | i

Embedding

e Great for read performance
e One seek to load entire object
e One roundtrip to database

e Object grows over time when adding child objects

the
10g8en | i
company

Linking or Embedding?

Linking can make some queries easy

// Find latest 50 tweets for "alvin"
> db.tweets.find({ : "alvin" })
.sort({ : =1 })
. 1limit(10)

But what effect does this have on the systems?

the
108en | i
company

Collection |

the
10g8en | i
company

Collection |

This is your virtual
memory size

(mapped)

the
MongoDB
company

Collection |

Physical
RAM

-

This is your
— resident
memory size

\

the
10g8en | i
company

Collection |

100 ns

10,000,000 ns

the
MongoDB
company

Collection |

Index |

db.tweets.find({
.sort({
. limit(10)

the
10g8en | i
company

: "alvin" })

: -1 })

Physical
RAM

LN

7]
~

Collection |

Physical
RAM

7]
~

db.tweets.find({ : ')

the
10gen | i
company

Problems

e Large sequential reads
e Good: Disks are great at Sequential reads
e Bad: May read too much data

e Many Random reads
e Good: Easy of query
e Bad: Disks are poor at Random reads (SSD?)

the
10g8en | i
company

Solution C
Buckets

// tweets : one doc per user per day
> db.tweets.findOne()

{
"alvin-2011/12/09",
"alvin@l@gen.com",

|
. "BOb",
: '"20111209-1231",
"Best Tweet Ever!" } ,
. ||J0e|| ,
"May 27 2011",
"Stuck in traffic (again)" }

the
10g8en | i
company

Solution C
Last 10 Tweets

// Get the latest bucket, slice the last 10 tweets

db.tweets.find({ : "alvin-2011/12/09" },
{ r : 10 })
.sort({ : -1 })
limit(1)

the
10g8en | i
company

Collection |

Physical
RAM

db.tweets.find({

{
.sort({
limit (1)

the
10gen | sx
company

: "alvin-2011/12/09" },

: —i F o)

/.

i
/

{ : 10} }) 1

Sharding - Goals

Data location transparent to your code
Data distribution is automatic

Data re-distribution is automatic
Aggregate system resources horizontally
No code changes

the
108en | i
company

Sharding - Range distribution
—_—

sh.shardCollection("test.tweets", { id: 1} , false)

shardOl " shard02 | " shard03

\ S

the
108en | i
company

Sharding - Range distribution

shard02 | " shard03

4)

Sharding - Splits

" shard02 |

" shard03 |

Sharding - Splits

" shard02 |

" shard03 |

Sharding - Auto Balancing

" shard02 |

" shard03 |

Sharding - Auto Balancing

" shard02 |

" shard03 |

\ J

How does sharding effect

Schema Design?

e Sharding key choice
e Access patterns (query versus write)

the
108en | i
company

Sharding Key

{ S Y i Y : <binary> }

e What’s the right key?
e auto increment
e MD5(data)
e month() + MD5(data)

the
10g8en | i
company

Right balanced access

e Only have to keep small

portion in ram e Time Based
e Right shard "hot" e Objectld

e Auto Increment

the
108en |
company

Random access

e Have to keep entire
index in ram
e All shards "warm"

the
10g8en | i
company

Segmented access

e Have to keep some
index in ram
e Some shards "warm"

e Month + Hash

the
10g8en | i
company

Solution A
Shard by a single identifier

{ : "alvin", // shard key
"alvin@l@gen.com",
"jonnyeight"
"alvin.j.richards",
[... 1]
s

Shard on { : 1}
Lookup by routed to 1 node
Index on { “ "1}

the
108en | &
company

Sharding - Routed Query
find({ id: "alvin"})

" shardol | [shardo2) [shard03

\ J

_)
the
108en | ix:
company

Sharding - Routed Query
find({ id: "alvin"})

" shardol) (shardo2) [shard03

\ J

_)
the
108en | ix:
company

Sharding - Scatter Gather
find({ email: "alvin@l@gen.com" })
é

" shardol | [shardo2) [shard03

\ J

_)
the
108en | &
company

Sharding - Scatter Gather
find({ email: "alvin@l@gen.com" })
é

" shardol | [shardo2) [shard03

\ J

_)
the
108en | &
company

Multiple Identities

e User can have multiple identities
e twitter name
e email address
e etcC.

eWhat is the best sharding key & schema design?

the
10g8en | i
company

Solution B
Shard by multiple identifiers

ldentities

{ = : "alvin", : ""'1200-42"}

{ : "em", : "alvin@l@gen.com" : ""'1200-42"}
=S | : "alvin.j.richards'|, : ""1200-42"}

e Shard identities on { 1, 1}
e Lookup by & routed to 1 node
e Can create unique index on &

e Shard info on { 1}

e Lookup info on routed to 1 node

the
108en | i
company

Shardmg Routed Query

" shard02 |

" shard03 |

Sharding - Routed Query

find({ type: "em",

Oy —_—) ’ val: "alvin@l@gen.com })

A d R

shardol) [shard02 shard03

J

10gen | i

Sharding - Routed Query

find({ type: "em",

Oy —_—) ’ val: "alvin@l@gen.com })

find({ _id: "1200-42" })

A d R

shardOl " sha~d02 shard03

J

10gen | i

Sharding - Caching
e ———

96 GB Mem

300 GB Data

compan

Aggregate Horizontal Resources

—_—

96 GB Mem 96 GB Mem 96 GB Mem
|:]1 Data/Mem I:]1 Data/Mem |:] Data/Mem
H H

shard02 | " shard03

300 GB Data

the
MongoDB
company

Auto Sharding - Summary

e Fully consistent

e Application code unaware of data location
e Zero code changes

e Shard by Compound Key, Tag, Hash (2.4)

e Add capacity

e On-line
e When needed
e Zero downtime

the
108en | i
company

Time Series Data

e Records votes by

e Day, Hour, Minute
e Show time series of votes cast

the
108en | i
company

Solution A
Time Series

// Time series buckets, hour and minute sub-docs
{ : '"20111209-1231",
ISODate('"2011-12-09T00:00:00.000Z7")
: 6/,
: { 0: 3
: { 0: 0,

// Add one to the last minute before midnight
> db.votes.update(
{ : '"'20111209-1231",
: ISODate("2011-12-09T00:00:00.037Z") 1},
{ : _{ 11 II: 1 }’
: _{ 11 II: 1 }’
: { 11 II: 1 } })

the
10g8en | i
company

BSON Storage

e Sequence of key/value pairs
e NOT a hash map
e Optimized to scan quickly

0 [1{2]3|[1439

What is the cost of update the minute
before midnight?

the
108en | &
company

BSON Storage

e Can skip sub-documents

0 [——

How could this change the schema?

the
10g8en | i
company

Solution B
Time Series

// Time series buckets, each hour a sub-document
{ : '"20111209-1231",
ISODate('"2011-12-09T00:00:00.000Z7")
: 6/,
: {0o: {0:0, 1: 7, ... = 2},

s 5

// Add one to the last second before midnight
> db.votes.update(
{ : ""20111209-1231" },
: ISODate("2011-12-09T00:00:00.000Z") I,
{ . _{ 1] ||: 1 }’
: { : 1} })

the
10g8en | i
company

Replica Sets

e Data Protection
e Multiple copies of the data

e Spread across Data Centers, AZs
e High Availability

e Automated Failover
e Automated Recovery

the
10g8en | i
company

Replica Sets

Asynchronous
Replication

108en | i

Replica Sets

Replica Sets

Automatic Election of
new Primary

108en | i

Replica Sets

New primary serves

Replica Sets

Replica Sets - Summary

e Data Protection

e High Availability

e Scaling eventual consistent reads
e Source to feed other systems

e Backups
e Indexes (Solr etc.)

the
108en | i
company

Types of Durability with
MongoDB

 Fire and forget

o Wait for error

e Wait for fsync

e Wait for journal sync
» Wait for replication

the
10g8en | i
company

Least durability - Don't use!

apply in memory

the
10g8en | i
company

More durability

write

getLastError

the
MongoDB
company

apply in memory

replicate

Durability Summary Other Data

Memory Journal Secondary Center
|

RDBMS

Default
"Fire & Forget:

w=|

w=|
j=true

w="majority"
w=n

w="myTag"

Less

the
108en | i
company

Eventual Consistency

Using Replicas for Reads

slaveOk()

e driver will send read requests to Secondaries
e driver will always send writes to Primary

Java examples
e DB.slaveOk()

e Collection.slaveOk()
e find(qg).addOption(Bytes.QUERYOPTION SLAVEOK);

the
108en | i
company

Understanding Eventual
Consistency

Insert Read Update

#1

4 4
4 4

Primary —6———6——}
108en | i

Understanding Eventual vl not

Consistency present

Application Read Read R &ic Reads

#2 vl

Application
#1

108en | i

Product & Roadmap

the
10g8en | i
company

The Evolution of MongoDB

1.8 2.0 2.2 2.4
March “I | Sept ‘I | Aug ‘12 winter ‘12

Journaling Index enhancements Aggregation
to improve size and Framework
performance

Sharding and
Replica set Multi-Data Center
enhancements Authentication with Deployments

Spherical geo sharded clusters Improved

search Replica Set Performance and
Enhancements Concurrency

Concurrency
improvements

the
10g8en | i
company

mongoDB

|

