O1l0;

conference
........ aarhuq

SOME CONSIDERATIONS
FOR SCALING

Bjorn Freeman-Benson
New Relic

@bjorn_fb >

e 7 >
X Nz
INTERNATIONAL {5)

fﬁ ‘ :.“._L j 1.|: \'L_,_ s lK 7 ! l p,
SOFTWARE DEVELOPMENT / A e o 7 F
3 ‘«,\ v" I]Cﬂ‘. ;'7‘1 ‘i - r» (
= P : =

ShESSS s — 9 _gotocon:com|

Sortby Avera

Germany

Australia

grazll

Canada

qussian Federation
United States
Hungary

United Kingdom

New Relic
O New Relic

£2 Database Sl ‘
87,074
27.0:1
M Memcache 087 ‘
226 ms
13:1
= End User . e
v 0.91[0.4]
0.89 [2.4]

4,062

™) nr-chi-app—l -

ms
api.heroku.com 325
1
] Overview Processes Network Disks 30 minutes -
CPU
usage Load average
t
Hide < 1% s
W
_ﬂ d time
ge loa
e average P2 W 10 wai 0 5500 User
Coul
7 sec i
) "y - nr-chi-app,. 1.nowmuc.com
ghis 24 CPys
” 47 GB RAM
255 g
- /P\ Red Hat Enterprise Linyyx
. - Server release 5.5
(ﬂkanga)
1.4 seC e
v
4 seC
1 { - - - Swap R Used
1.3s€C . | j ‘
‘; utilization Network vo (Mbys)
I ‘4 <@ RPM Ul (nr. chi-app-1 230 ms
nNewreiic. com)
S 72
ad time
ge 0
Average Pa e
|oad tim
1.2 5€¢ o5 by average page
i
Top coun

)~
& Collector Proxy (nr-chi

1,627 rpm o, 03%
pp-1.newrelic.c

Wednesday, October 3, 12

om)

35ms 1,835 Pm 0.00%
Vo(;'oupoo—(.og\.blco

Processes _, User Count
ruby
Received

Transmitteq

CPu Me'nory
pmui 24 2029 98Ge
memcacheq memcacheq 1 00% 1G8

O New Relic Simplified Architecture

Our datacenter

—
p— ——

—_Java

OO S unn

Wednesday, October 3, 12

Our growth

In 42 years, zero to 30,000 accounts...
... largest account has 17,000 servers

... 58 x 10° metrics per day
(40 x 10° per minute)

.. 51D of data a day
(3.5Gb per minute)

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

Lean Startup

O New Relic

As a start-up: first prove that we had
something, then scale, but plan to scale

The Search for the Business Model : The Execution of the Business Model

- Business Model found - Cash-flow breakeven
- Product/Market fit - Profitable

- Repeatable sales model - Rapid scale

- Managers hired - New Senior Mgmt

150 people

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

Our First System

PaaS at Engine Yard

8 physical machines with multiple VMs
Everything in Ruby

Homegrown load balancer

Separate processes for each activity
Perfect for the “Search for Business Model”

Wednesday, October 3, 12

System Characteristics

1. Every app instance of every customer
sends us data every minute

2. Only a subset of customers view the
data on any given minute

3. Data has a steep half-life: most
interesting data is seconds old

4. Accuracy is essential

Wednesday, October 3, 12

The Basics (5)

19

THE BASICS

Wednesday, October 3, 12

#1: F5

O New Relic

Reduce the number of connections to
the servers

F5 buffers requests and handles SSL

i
F5 BigIP Local Traffic Manager .

Wednesday, October 3, 12

#2: Bare metal

VMs didn’t work well for us
|/0 latency problems
I/0 bandwidth jitter

Ruby is very memory heavy and VMs
don’t handle memory mapping as well
as native CPUs

oy

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

#3: Direct Attached Storage

O New Relic

MySQL depends on really fast write
commits

Thus we need the disk cache as close
to the cpu as possible

Storage Array

SAN switches

Wednesday, October 3, 12

#4: No App Servers

O New Relic

Our high throughput collector
processes don’t need app servers
so they are native Java apps with
an embedded Jetty

Aggregator 3.1ms 598,771 rpm 0.01% & -

@ Beacon 0.17ms 990,212 rpm 0.00% & ~

http:/ Ibit.ly/ QrOExM

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

#5: Unicorn

Every worker shares the socket so
there’s no need for a dispatcher

Also easy to live-deploy new code -
helps with our Continuous Deployment

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

The Usual Suspects (4)

#6: Agent Protocol

O New Relic

Our first agent protocol was quick and
dirty: Ruby object serialization and
multiple round trips

def marshal_data(data)
NewRelic: :LanguageSupport .with_cautious_gc do
Marshal . dump(data)
end
rescue => e
log.debug("#{e.class.name} : #{e.message} when marshalling #{object}")
raise
end

Refined: reduce round-trips (package
more data into the payload); keep-alive

O New Relic #7: Accumulate & Resend

il =lllllll S nmm mm-

O DS S — e DO =1 S unnn ——
") = x ") -
& “|5
l' 4,’4
\ -

If a service is temporarily unavailable,
accumulate and retry

recover_from_communication_error:

nr__log (NRL_DEBUG, "[%s] recovering from communication error..", appname);
nr__close_connection_to_daemon (nrdaemon);

nrthread_mutex_lock (&app->lock); {

nr_metric_table__merge_metrics_from_to (data->metrics, app->pending_harvest->metr
nr__merge_slow_transactions_from_to (&(data->slow_transactions), &(app->pending_h
nr__merge_errors_from_to (&(data->errors), &(app->pending_harvest->errors));

Wednesday, October 3, 12

#8: Large Accounts

O New Relic

Our first customers were small.

Later larger customers stretched our
assumptions. We added smart sorting,
searching, paging, etc.

There are too many servers for us to display at once. We're only showing the top 200 of your 3157 servers,

Go to a list of all of your servers —

Fiterbyapp =~ search host names

Wednesday, October 3, 12

#9: ORM Issues

O New Relic

ORMs (Rails) are nice but can quickly
load too many objects. Do a careful
audit of slow code.

Slow transactions — Resp. Time

ChartData::MetricChartsController#app_breakd... 435 ms
Api::V1::DataController#multi_app_data 2,230 ms

ApplicationsController#index 527 ms

Api::V1::DataController##multi_app_data 1,343 ms

ApplicationsController#index 1,272 ms

Show all slow transactions —

Wednesday, October 3, 12

The Clever Stuff (6)

UNITED FEDERATION OF AWESOMENESS

O New Relic #10: Pre'COmpl,Ite

Pre-compute expensive queries

& Beacon » . 935,975rpm 0.01% %

@ Beacon 1 0.22ms 724634pmvy 001% & ~

& Beacon 2 [211,331 rpm

& Aggregator »

& Aggregator 0 ! Beacon 1 Chi'beacon'1
& Aggregator 1 3ms

& Aggregator 2 Bms
© Aggregator 3 1=y Beacon 2 chi-beacon-2
Beacon

Wednesday, October 3, 12

#11: Real-time BG

Background job to roll-up timeslice
data: minutes to hours, hours to days

(oot (oot
\ (BGJOb)(BGJOb) \\ (b)
\ ‘ \

Wednesday, October 3, 12

#12: Different DBs

O New Relic

Different data has different characteristics
Account data is classic relational
Timeslice data iIs write-once

Use different database instances for each
kind of data

Different tuning parameters (buffer pools, etc)
Similar to buddy memory allocation

http:/ Ibit.\yl\/fQGBR

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

#13: Non-gc gc

Problem: Deleting rows Is expensive
(due to table-level locking)

Solution: Don’t delete rows

Schema has multiple tables
(one per account per time period)

Use DROP TABLE for gc

Similar to the 100-request restart
at amazon.com/obidos in 1999

Wednesday, October 3, 12

#14: Computation in DB

O New Relic

Natural sharding allows us to push
computation into the db

Supported by schema

Limits number of rows returned

Thus allows scripting language (Ruby)
to do ‘real’ work

Opposite of the classical advice of

doing nothing in the db

Wednesday, October 3, 12

http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw
http://bit.ly/OPtdLw

#15: SSDs

O New Relic

Our data is either random writes and
sequential reads, or sequential writes
and random reads

Choose sequential reads because of Ul
Use buffers to help random writes, but...

Switched to SSDs

writes are same or slight slower
reads are fast, random or sequential

Wednesday, October 3, 12

The Optimizations (2)

S
§)
o
S
@
=

#16: Moving Processes

O New Relic

Different processes have different
performance characteristics: cpu,
memory, i/o, time of day, etc.

Allocate processes to machines to
balance the resource requirements

Instead of “all X processes on M1 and Ys on
M2” we balance the machines

Wednesday, October 3, 12

#17: Moving Customers

O New Relic

Customers have different data
characteristics: size, access patterns, ...

Allocate customers to shards to
balance the size and loads on the
shards

Required an early architectural decision to
allow data split between shards

Wednesday, October 3, 12

Take-away

O New Relic Ta ke-away

1. Do the basics
2. Design in some scalability

3. Use the unique characteristics
of your app to optimize

4. Buzzwords Moasures
not needed ' © 978230

| WebPa e Views
Per Minute

Collects

40!430’m

Metrics Per Minute .||'

“i Thats = Wow! That's .
~1,408,649,760 58,222,000,000
per day! per day!

Wednesday, October 3, 12

