
Making the JVM fly
Experiences with Enterprise

JVM Performance tuning

John Davies - CTO Incept5
Aarhus/Århus - 2nd October 2012

@jtdavies

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Landing on the beach (New Zealand)

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

White Island (Volcano in New Zealand)

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Sydney

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

The Olgas (Australia)

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Parking at the pub (Australia)

• William Creek in the Outback

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

With Ross Mason over San Francisco

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

A great way to see the bridge

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Agenda

• Memory management - yesterday and today

• Simple code tuning

• Obvious mistakes - hang on, not so obvious!

• Simple is better

• JVM Memory

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

The Problem
• Seriously large volumes of data to be parsed

• Tens of thousands of Fix messages per second

• Thousands of payments messages per second

• Twenty dual quad-core machines, each processing 2,000 per
second each might work
• But with a few weeks work and just 3 of those machines running

20,000 each is far better, cheaper and more resilient

• Performance isn’t just about doing things faster
• It’s also better CPU usage, servers cost money and they’re even more

expensive to support in production

• Latency costs money (“1ms = $100m” in trading, “100ms = 1% of
sales” for Amazon)

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Today’s talk
• No magic bullets :-(

• Hopefully some ideas for you
• Decades of experience in some of the world’s largest systems

• No go-faster JVM options
• Hopefully a few that will help though

• ... and I hope a better understanding of the options

• Most performance tuners are fine tuners, I like to tackle the
architecture and design
• Most of my challenges need an order of magnitude more “oomph”

• Transactions are the biggest problem - that’s another talk though!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Java vs. C/C++

• 15 years ago I used to teach Java for Learning Tree

• One part was demonstrating how to hook Java up to C to
run things faster

• Naturally we used JNI

• The demo was impressive
• It ran like a dog in Java

• It flew in C

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Mandelbrot - Early Java

• The Mandelbrot engine...

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Java vs. C/C++

• By 2000 things had changed
• The same demo showed a very

different effect

• It became a demonstration of
why NOT to use JNI

• Since then things have
changed on the server-side

• Java became a serious player
in the enterprise

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Millions of calculations

• The Mandelbrot was a good benchmark but it tested mainly
the CPU, at least the floating point part of it
• A 1024x768 screen has 786,432 pixels, the Mandelbrot usually runs

for about 100 to 1,000 iterations to get a smooth textures

• That’s up to 786 million floating point calculations per VGA screen

• Today we aim for 3D rendering in 1080p (1080x1920)
• We also have enough memory to pre-calculate and store in-memory

• Once the fractal is understood mathematically then interesting
optimisations can be applied

• The Mandelbrot remains a good test of floating point
performance

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

On to data processing

• Floating-Point processing is vital for financial calculations but
a lot of the information comes in complex messages

• Let’s take a quick look at Strings
• We’ll start a few years ago, about 20...

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Strings in Pascal

• The first byte is the length of the String
• ‘0C’ or 13 in decimal is the length of “Hello Aarhus!”

• It’s interesting that we couldn’t have used “Århus”

• Testing the length of the string was very quick
• It was simply string[0]

• The maximum length was limited to 255 though

• Copying and substrings meant physical memory
manipulation
• Concatenation was relatively easy

H

e

l

l

0

A

a

r

h

u

s

!

0C0A457A

0A457B

0A457C

0A457D

0A457E

0A457F

0A4580

0A4581

0A4582

0A4583

0A4584

0A4585

0A4586

0A4587

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Strings in C
• The last byte of the string is a ‘\0’ (zero)

• Strings are now only limited in size by available memory

• Again we can’t write “Århus” in classic C

• Testing the length of the string meant searching for
the zero byte at the end

• Not being able to use the ‘\0’ character limits C
strings to 255 characters, unicode was out
• But it was easy to pass a length too if needed

• Copying, substrings and concatenation also
relatively easy

H

e

l

l

0

A

a

r

h

u

s

!

\0

0A457A

0A457B

0A457C

0A457D

0A457E

0A457F

0A4580

0A4581

0A4582

0A4583

0A4584

0A4585

0A4586

0A4587

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Working with strings in C
• So take a string in C (we use char[] which is like byte[])...

• char[] hello_string = “Hello Aarhus!”;

• Copy it to another string...
• char[] hello_string2 = hello; // cool and super fast!

• In fact an explicit string was hard-coded at compile time

• Now modify the second string and print the first...
• hello_string2[5] = ‘\0’;

• printf(“%s”, hello_string);

• > Hello
• Oops!

H

e

l

l

0

A

a

r

h

u

s

!

\0

0A457A

0A457B

0A457C

0A457D

0A457E

0A457F

0A4580

0A4581

0A4582

0A4583

0A4584

0A4585

0A4586

0A4587

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Passing by reference...
• Back to the previous slide...

• char[] hello_string = “Hello Aarhus!”;

• Now we call a function (like a method)...
• doSomething(hello_string);

• In the method we modify the string for some reason...
• void doSomething(char[] string) {

• hello_string2[5] = ‘\0’;

• }

• This changes the original hello_string
• But boy is it fast!!!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Strings and Collections

• In the days of C things weren’t as simple as they were today

• Write a string to a collection (list, set, map etc.) and there
was the question of who “owned” the string
• If the writer deleted (freed) the string then the collection had a

corrupt string (as did the reader)

• If the reader freed it then the collection and writer had a corrupt
string

• Ownership of the string had be be part of the API created for the
collections

• Eventually standard libraries came along and then OO
languages like C++ came to the rescue, well almost!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Memory management

• In the “old days” we managed our own memory

• A good programmer or team with good disciplines could
write some pretty slick code than ran like a rocket

• Sadly there was only a few of us :-)

• Virtual machines with memory management became the best
solution for the masses
• People could create string, copy them, duplicate them, write them to

collections and create arrays of them and never worry about who
owned them or who was going to delete them

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Strings in Java

• We all know the classic error with Java Strings...
• Running something like firstString += otherString in a loop

• Obviously StringBuffer is a better option here

• But take something only slightly more complex and it’s not
so obvious...
• String alphabet = “abcdefghijklmnopqrstuvwxyz”;

• for(...) {

• myObject.setLetter(alphabet.substring(9,10));

• }

• Here we’re creating a new String with the subString
• It’s not a mistake but it creates a lot of extra work

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

The JVM will take care of it!

• Java’s Garbage Collector is superb, the JIT compiler is superb
• But neither will cope with bad design or crap code

• When you start to scale up in size or performance then you
need to start thinking like a C programmer

• Ideally we should pass by reference not by value
• But it’s not possible in Java (C# yes but not Java)

• In this case Java’s String can be your friend

• We need to start thinking intelligently about passing large
amounts of memory/data around

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Working with byte[] instead of String

• The previous example
• String alphabet = “abcdefghijklmnopqrstuvwxyz”;

• for(...) {

• myObject.setLetter(alphabet.substring(9,10));

• }

• When optimised runs over 60 times faster...
• byte[] alphabetBytes = alphabet.getBytes();

• for(...) {

• myObject.setLetter(alphabetBytes[9]);

• }

• If course you may need char[] rather than byte[] and be careful not to
pass byte[] in the method call, that’s passed by value!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

A side line...
• Last week I visited a client

• A large one who shall remain nameless

• They will go live in a few weeks and somewhat short of their
performance target
• Although they have time so they’re not panicking yet

• I started at the top, the architecture
• Diagrammatically is was relatively simple, decoupled and distributed

• A few strange technology choices in some areas but nothing new
there

• One of their applications was running a 4GB JVM

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Too much memory

• We did a “ps -ef” and also found Apache Tomcat was also
running on the same box

• The total memory allocated to the two JVMs running on the
same machine was 6GB
• Fine you might think, my laptop has 16GB, 6 is nothing these days

• I asked how big the machine was...

• Ah it’s a virtual machine with 4GB RAM and ...

• Stop, 6GB of Java on a 4GB machine, check the swap space!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Too much memory
• It’s very easy to give the JVM a lot of memory

• But don’t allocate more than you have and watch what else you have
running on the same machine

• As soon as the JVM allocates memory past the VM (Linux
VM) limits it hits swap space which is disk

• If things start getting busy on those machines and the
memory gets used then they start hitting disk

• We start to see 2 orders of magnitude (over 100 times)
drop in performance
• It will be difficult to debug as everything will appear to be working

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Over-engineering

• Another example of architectural issues

• A client needs a “safe store”, say 20,000 messages a second
for 24 hours - 8 hours of live trading
• Each message is just under 1k in size

• 20 meg per second, 72 GB per hour

• 72 million message per hour, 576 million (576 GB) in 8 hours

• So they used an in-memory storage product
• Not only is it very expensive, it doesn’t work very well for them (yet)

• It’s probably going to get refactored out

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

What’s wrong with disk?

• Today’s SSDs will write over 500m per second
• 1.8TB per hour

• Total cost of 1TB of SSD disk - under $1,000

• We have clients writing up to 350,000 Fix messages a second
form the CME onto disk, hard-disk!
• Each hour we rotate the log, tar/gz it and upload it to EC2

• People tend to forget the simple solutions

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Understanding the JVM memory

• The JVM has two main sections of memory

• Perm (“perm gen” or permanent generation) - used for
classes etc.

• Heap - used for the application - more on this shortly
• Both sections are garbage collected

• Perm tends to be fairly static, it usually runs out if you load a
lot of classes
• You can set the max size with

• -XX:MaxPermSize=250m

• Changing this is unlikely to effect performance in any way other than
making your application work or not

•

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

• The heap is the part of memory
used by your application
• You can set the maximum size with

• -Xmx256m

• You can also set the initial size with

• -Xms32m

• In the above example the heap will
grow, as required, from 32 meg up to
256 meg

• Each time it grows there is a minor
pause as the new memory is requested
from the OS

• If you want consistent performance then
set both values to the same

• -Xms256m -Xmx256m

The JVM heap

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

There’s more...
• The heap is actually divided into several sections...

• Old generation (tenured)

• New generation - Subdivided into Eden and Survivor spaces, there are
two survivor spaces

• To set the ratio between new and old you can use

• -XX:NewRatio=3

• New Objects are created in “Eden”
• When this is full a “young generation GC” takes place and surviving

objects are put into survivor space

• When survivor space gets full objects are moved to old generation

• When old generation gets full a full GC takes place

• As the heap get full the GC battles with the application for memory

• Eventually you get an OutOfMemoryException

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

JVM memory

• In a nutshell...

Eden

Surviver space

PermGen

Surviver space

Old
(Tenured)

New gen / -XX:NewSize Old / Tenured

-Xms

Reserved (to be used)

Reserved (to be used)

-Xmx

Reserved (to be used)

-XX:MaxPermSize

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

New vs. Old

• Understanding how your application uses memory is key to
optimising the JVM

• If you’re creating lots of temporary objects then you’re going
to get a lot of young GCs
• Try setting the NewRatio to something like 2 or even 1

• You can set the ration of the Eden to survivor space with

• -XX:SurvivorRation=8

• If it’s too small too much is copied into old-gen, too large and it
remains empty

• If you get this far then you’d better know what you’re
doing!!!

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Some useful tools

• Assuming you’ve now got the perfect architecture
• And you’ve optimised your code

• You’ve killed transactions and taken out the ORM layer

• Your application is now perfect in every way

• Finally you can move on to the JVM tuning...

• jstat - for monitoring you application

• jvisualvm - jstat in pretty graphics

• -verbosegc, -Xloggc:gc.log, -XX:+PrintGCDetails, -XX:
+PrintTenuringDistribution, -XX:+PrintGCTimeStamps, -XX:
+PrintHeapAtGC, -XX:+PrintGCApplictionStoppedTime

Monday, 1 October 12

Copyright © 2012 Incept5 Ltd.

Close

• If you need more “oomph” from your application...

• Look first at the architecture and environment
• Include the users (actors) and how they interact with the application

• If you use transactions, you probably don’t need them

• Get rid of ORM - look into NoSQL

• Then the code
• Look for excessive use of Strings and objects being passed around

• Finally the JVM
• Other than simple tuning this should be your last stop

Monday, 1 October 12

