........ =aar hug

UP UP AND OUT:
SCALING SOFTWARE WITH AKKA

Jonas Boneér
CTO Typesafe

@jboner . 1_;
z iQF\
(o

o h-\\‘
f \
! \ o,
’ ! P \ 7
| \
‘l A \
/r r'({‘ N I'-- ér}
’ o3 ‘.| -
/ -
]
. .
\

== gotgconpcom(1

INTERNATIONAL
SOFTWARE DEVELOPMENT

CONFERENCE

2\

Sca/ 177
Sof Z‘warz torth a k ka

Jonas Boner

CTO Typesafe
@jboner

o= Typesafe

AN

Sca/ 117
Sof Z‘warz oIt A a k ka

Scalin /
5ofz‘warz e/ a k ka

Akka (Ahkka)

The name comes from the goddess in the Sami
(native swedes) mythology that represented all
the wisdom and beauty In the world.

't 1s also the name of a beautiful mountain In
Laponia in the north part of Sweden

Manage System Overload

YAN
=== Typesafe akka

Scale UP & Scale OUT

|

eseaaas
:

AN
akka

=== Typesafe

=== Typesafe

—HOW

can we achieve this!

AN
akka

Let’s use A

N
-
-
-

_?9(‘

4

e

=== Typesafe

VWhat I1s an Actor?

2\
akka

VWhat I1s an Actor?

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

=== Typesafe

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

® | ke Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
"policy decisions” separate from the business logic

=== Typesafe

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

® | ke Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
"policy decisions” separate from the business logic

® Actors may be new to many in the Java community,
but they are a tried-and-true concept (Hewitt 197/3)
used for many years In telecom systems with 9 nines
uptime

4N
=== Typesafe akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

=== Typesafe

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,

thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

® You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of

the mode]

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

® You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

® Proven and superior model for detecting and
recovering from errors
A\

=== Typesafe akka

» ’ ,

.rﬂ. g

2

Distributable by Design

akka

Distributable by Design

® Actors are location transparent & distributable by design

AN
=== Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design

® Scale UP and OUT for free as part of the model

AN
=== Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic

— fault-tolerant & self-healing

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic
— fault-tolerant & self-healing

— adaptive load-balancing, cluster rebalancing & actor migration

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic
— fault-tolerant & self-healing
— adaptive load-balancing, cluster rebalancing & actor migration

— build extremely loosely coupled and dynamic systems that can
change and adapt at runtime

$Y 4N
o= Typesafe akka

Selection of Akka Production Users

« (839 5 IZ/ARD
M Velefnian ity (ﬁﬁ] BLAKD

SIEMENS amazoncom

&l% UBS , P KLOUT
- HSBCc«x ‘'lvth @@

WSV CISCO HUAWEI «banksimple

a e
VD€ Autodesk CREDIT SUISSE\ §:§ IGN

A0S ~ o

~ 02 vimware ﬂlglgwg P ——

XeroXe,) oo00000 oo

2 NOVIreC
B|B|C I

[J cARTOMAPIC lwos:
T8 Webware
o junPer g
ngmoco:) , NETWORKS
M\ azavea zeebox

Answers.com: oo

VWhat can | use Actors for?

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

— an object instance or component

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread
— an object instance or component

— a callback or listener

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread
— an object instance or component
— a callback or listener

—- asingleton or service

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

— an object instance or component
— a callback or listener

—- asingleton or service

- a router, load-balancer or pool

2\

o= Typesafe akka

VWhat can | use Actors for?

In dr

alternative to:

a thread

ferent scenarios, an Actor may be an

an object instance or component

a callback or listener
a singleton or service
a router; load-balancer or

a Java EE Session Bean or

DOO|

Vessage-Driven Bean

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an

alternative to:

- a thread

— an object instance or component

— a callback or listener
—- asingleton or service
— a router, load-balancer or
— a Java EE Session Bean or

- an out-of-process service

DOO|

Vessage-Driven Bean

2\
akka

VWhat can | use Actors for?

In dr

alternative to:

a thread

ferent scenarios, an Actor may be an

an object instance or component

a callback or listener
a singleton or service
a router, load-balancer or
a Java EE Session Bean or

an out-of-process service

DOO|

Vessage-Driven Bean

2\

a Finrte State Machine (FSM) akka

S0, what Is the

Model?

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

>

i

torage

= C'\ nication

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

L
torage

" C'\ nication

- 3 axioms - When ar recelives a message It can:

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w 5
- Storage
- C'\ glfeciile]p
— 3 axioms - When ar

- Create new Actors

receives a message It can:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w . S
rage
= C'1 nication

- 3 axioms - VWhen an

— Create new Actdifes

recelives a message It can:

- Send messages to Actors I

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w

torage

- C'\ nication
— 3 axioms - When an

— Create new Actors

- Send messages to Actors I

recelives a message It can:

‘s

e next message it rece

-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

4 core Actor operations

. CREAT
2. SEND
3. BECOME

4. SUPERVISE

2\

o= Typesafe akka

0. DEFINE

//;ublic class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }
s

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);
¥

o2k Typesafe

2\
akka

~— 0 TYEEIN|F

Define the message(s) the Actor
should be able to respond to

A/

PR

public final String who;
public Greeting(String who) { this.who
I3

if (message instanceof Greeting)

}

ublic class Greeting implements Serializable {

= who;

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

}

public void onReceive(Object message) throws Exception {

log.info("Hello " + ((Greeting) message).who);

o2k Typesafe

2\
akka

N MEEIN|E

Define the message(s) the Actor
should be able to respond to

/- ’
//;ublic class Greeting 1 ble {
public final String
A Greeting(Str.IDeﬂnethe/MiorCESS who: 1

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);
¥

o2k Typesafe

2\
akka

N MEEIN|E

Define the message(s) the Actor
should be able to respond to

/- ’
//;ublic class Greeting 1 ble {
public final String
A Greeting(Str.IDeﬂnethe/Miorckﬁs who: 1

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("HelA\" + ((Greeting) message).who);
¥

; Define the Actor’s behavior]

2\
akka

| CREAITE

® CREATE - creates a new instance of an Actor

® xtremely lightweight (2.7 Million per Gb RAM)

® \ery strong encapsulation - encapsulates:
- state
- behavior

— message queue
® State & behavior is Indistinguishable from each other

® Only way to observe state Is by sending an actor a

message and see how It reacts

4N
=== Typesafe akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);

}
}

ActorSystem system = ActorSystem.create("MySystem");

_

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

/

o= Typesafe

2\
akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)
log.info("HP——— SE—

; Create an Actor system

jmessage) .who) ;

}

ActorSystem system = ActorSystem.create("MySystem");

_

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

/

o= Typesafe

2\
akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
'Log.lnfo(ll n Bl | Ll [L~ L \ messaﬂp\-\/\lh(ﬂ'

LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

) ; Create an Actor systemj Actor conﬂguratiOﬂj

}

ActorSystem system = ActorSystem.create("yfSystem");

_

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

/

o= Typesafe

2\
akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("HP——— —= = A\messaae) .who) -

m
) b Create an Actor systemj Actor conﬂguratiOﬂj

}

ActorSystem system = ActorSystem.create("yfSystem");

_

LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), '"greeter");

/

Y
)

/7
L‘Gwemanaﬂe

o= Typesafe

2\
akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {

public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

/

o= Typesafe

log.info("H——— He——\messgae) .whao):
} .
| Create an Actor systemj Actor conﬂguratlonj

}

ActorSystem system = ActorSystem.create("ygSystem");

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), '"greeter");

\ Create the Actor /
k» GweﬁanaﬂejJ

2\
akka

CREATE Actor

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("HP——— —= = A\messaae) .who) -

m
) b Create an Actor systemj Actor conﬂguratiOﬂj

}

ActorSystem system = ActorSystem.create("yfSystem");

.\ Ny

LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), '"greeter");

/

Give It a name

Y
)

Create the Actor
L:;)u get an ActorRef bac|<J k
< Types

2\
akka

Actors can form hierarchies

Guardian System Actor

Actors can form hierarchies

Guardian System Actor

w s}'stem.actorOf(Pros[F]’uF 00" |

—— =

Actors can form hierarchies

Guardian System Actor

w s}'stem.actorOf(Pros[F]’uF 00" |

—— =

Actors can form hierarchies

Guardian System Actor

I

| context.actorOf(Prop[,“A”) |

j;

Actors can form hierarchies

Guardian System Actor

@ context.actorOf(Props[A],“A”) |

Actors can form hierarchies

Guardian System Actor

o O
OJO O
O @ @) ©

Name resolution - like a file-system

Guardian System Actor

o O
OJO O
O @ @) ©

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

| [FoolA/B

' 4oo/A/ - ;

=== Typesafe

2. SEND

2\
akka

o SEN

2. SEND

D - sends a message to an Actor

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

® EVERY THING is asynchronous and lockless

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

® EVERY THING is asynchronous and lockless
® Fverything happens REACTIVELY

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

® EVERY THING is asynchronous and lockless
® Fverything happens REACTIVELY

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

4N
=== Typesafe akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

® EVERY THING is asynchronous and lockless
® Fverything happens REACTIVELY

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

- Messages Is the Kinetic Energy in an Actor system

A\
o= Typesafe akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® Fverything happens REACTIVELY

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

- Messages Is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy
but can't do anything with it until it Is triggered by

d MesSsSage
° AN
o= Typesafe akka

SEND message

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);

}

s
ActorSystem system = ActorSystem.create("MySystem");

reeter.tell(new Greeting('"Charlie Parker"));

NG

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), 'greeter");

v

=== Typesafe

2\
akka

SEND message

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);

}

s
ActorSystem system = ActorSystem.create("MySystem");

reeter.tell(new Greeting('"Charlie Parker"));

NG

ActorRef greeter = system.actorOf(new Props(GreetingActor.class), 'greeter");

v

Sendtherne&ag%)

=== Typesafe

2\
akka

~ull example

//;ublic class Greeting implements Serializable {

public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
LoggingAdapter log = Logging.getlLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {

if (message instanceof Greeting)
log.info("Hello " + ((Greeting) message).who);

}

}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), ''greeter");

greeter.tell(new Greeting('"Charlie Parker")); A//

_
VAN
o2k Typesafe a/kka

Remote deployment

Just feed the ActorSystem with this configuration

//;kka { ‘\\
actor {
provider = akka.remote.RemoteActorRefProvider
deployment <
/greeter {
remote =
}
}
s
. Y,

2\
akka

Remote deployment

Just feed the ActorSystem with this configuration

-

akka {

actor {
provider =
deployment
/greeter
remote

akka.remote.RemoteActorRefProvider

{
{

4
E Configure a Remote Provider)

2\
akka

Remote deployment

Just feed the ActorSystem with this configuration

e
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =

A\
o= Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =
)

Define Remote Path

VAN
o= Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://

)
Define Remote Path Protocol
2\

=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem

)
Define Remote Path Protocol Actor System
A\

=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel

_J \
Define Remote Path Protocol Actor System | Hostname ’
A\

2= Typesafe akka

/

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m

VAN
=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m

Zero code changes PN
o= Typesafe akka

3. BECOME

2\
akka

3. BECOME

® RECOME - dynamically redefines Actor’s behavior

2\
akka

3. BECOME

® RECOME - dynamically redefines Actor’s behavior

® [rigsered reactively by receive of message

2\
akka

3. BECOME

® RECOME - dynamically redefines Actor’s behavior

® [rigsered reactively by receive of message

® |n a type system analogy
type - changed interface,

it Is as If the object changed

brotocol & implementation

2\
akka

3. BECOME

® RECOME - dynamically redefines Actor’s behavior

® [rigsered reactively by receive of message

® |n a type system analogy
type - changed interface,

it Is as If the object changed

brotocol & implementation

® \Will now react differently to the messages It receives

2\
akka

3. BECOME

® RECOME - dynamically redefines Actor’s behavior

® [rigsered reactively by receive of message

® |n a type system analogy
type - changed interface,

it Is as If the object changed

brotocol & implementation

® \Will now react differently to the messages It receives

® Behaviors are stacked & can be pushed and popped

=== Typesafe

2\
akka

Why would | want to do that!

A\
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
nimself into an Actor Pool or a Router

A\
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
nimself into an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

4N
=== Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
nimself into an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

® |mplement graceful degradation

4N
=== Typesafe akka

Why would | want to do that!

_et a highly contended Actor adaptively transform

nimself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that

can become whatever the Master currently needs

2\

=== Typesafe akka

Why would | want to do that!

_et a highly contended Actor adaptively transform

nimself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that

can become whatever the Master currently needs

® ctc. use your imagination

2\

=== Typesafe akka

Why would | want to do that!

_et a highly contended Actor adaptively transform

nimself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that

can become whatever the Master currently needs

® ctc. use your imagination

® \ery useful once you get the used to It

2\

=== Typesafe akka

pecome

~

context.become(new Procedurel[Object] () {
void apply(Object msg) {
// new body
if (msg instanceof NewMessage) {
NewMessage newMsg = (NewMessage)msg;

r);

_ /

pecome

Actor context available
from within an Actor
\/
V
context.become(new Procedure[Object] () {
void apply(Object msg) {
// new body

if (msg instanceof NewMessage) {
NewMessage newMsg = (NewMessage)msg;

~

r);

_ /

© Bob Elsdale

Routers

ActorRef router =
system.actorOf (

new RoundRobinRouter(5))):

_

~

new Props(SomeActor.class).withRouter(

/

2\
akka

Router + Resizer

-~

int lowerBound
int upperBound

~

5;
20;

ActorRef router =

system.actorOf (
new Props(ExampleActorl.class).withRouter(
new RoundRobinRouter (
new DefaultResizer(
lowerBound, upperBound))));

/

2\
akka

concurrency

New concurrency utilities in Java /

® Fork/|oin framework

— For parallelizing divide and conquer algorithms

® |[hreadl.ocalRandom

— For minimizing contention using random numbers

® Phaser

- More flexible CyclicBarrier

A\
o= Typesafe akka

Algorithm

Fork:

Recursively decompose
arge tasks into sub tasks

|oin:
Awalt results of recursive
tasks and combine

Algorithm

ForkJoinTask

-ork: /Q‘
Recursively decompose P LN\
. ork() fork()
arge tasks into sub tasks / \
: Child ForkJoinTask Child ForkJoinTask
|oin:

Awalt results of recursive
tasks and combine

Algorithm

-Ork;
Recursively ¢

ecompose

arge tasks In

|oin:

Awalt results of recursive

0 sub tasks

tasks and combine

ForkJoinTask

AN
join|) join()

fork() fork()

/N

Child ForkJoinTask Child ForkJoinTask

ForkJoinTask ForkJoinTask

Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask

Algorithm

-Ork;
Recursively ¢

ecompose

arge tasks In

|oin:

Awalt results of recursive

0 sub tasks

tasks and combine

Child ForkJoinTask Child ForkJoinTask

ForkJoinTask
AN
join() jomn()
fork() fork()

/N

Child ForkJoinTask Child ForkJoinTask

ForkJoinTask ForkJoinTask

Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnn

Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask Child ForkJoinTask

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

-H

G

TR :
A SN > 7 ; .
(«

Using Work Stealing

ParallelArray

ParallelArray<Student> students = A
new ParallelArray<Student>(fjPool, data)

double bestGpa = students
.withFilter(isSenior)
.withMapping(selectGpa)
.max();

A\
=== Typesafe akka

Other uses of Fork/|oin

® Scala Parallel Collections
- collection.par foreach print
- collection.par map (_ + 1)

® Upcoming Java Parallel Collections?

® Akka

— ForkJoinPool-based Dispactcher

— ThreadlLocalRandom

2\
akka

Akka use
,

't started with a benchmark on our
single 43-core box

Default dispatcher using

msg/s
1500000

1200000

800000

600000

300000

0

| hreadPoolExecutor

Throughput (msg/s) vs. number of actors

Q Q o Q Q

Q
O thread-pool
4 8 12 16 20 24

actors

[his doesn't look to good

procs

NWWaWNWV S

S0 UT

swpd free buff cache
@ 129633352 167004 424232
0 129633360 167008 424232
0 129633368 167008 424232
@ 129633376 167008 424232
@ 129633376 167008 424232
@ 129633376 167008 424232
0 129633248 167008 424232

Si

in CS us sy id wa

@ 36903 72191
4 38242 74654
@ 39025 7639
0 39703 77407
0 38870 75973
20 36709 71608
© 39180 76520

nmnoohwoumo

new rorkloinrPool

20,000,000

17,500,000

15,000,000

12,500,000

10,000,000

7,500,000

5,000,000

2,500,000

Throughput (msg/s) vs. number of actors

- a O - .
n Q O fork-join
O thread-pool
aQ
Q
. 00000
Q"‘)
16 32 86 112 128

actors

%%t m0
S0 CT

1 his looks much better

swpd free Dbuff cache
@ 129483104 167744 424400
0 129483472 167744 424400
0 129482728 167744 424400
0 129409456 167744 424400
0 129402032 167744 424400
0 129401536 167744 424400

si

in ¢S us sy id wa

0 12698 1331 97
0 12395 744 98
0 12600 1331 97
0 12534 875 99
0 12384 750 98
0 12739 1329 97

WN M= W= Ww

After tweaking it some more..

million msg/s Throughput (msg/s) vs. number of actors
60

54
48 o o
42
36 —
30 o
24
18 o
12

6

0
0 10 20 30 40 50 60 70 80 80 100

+50 million
messages per second

Recovery

Our Disaster Recovery Plan
Goes Something Like This...

DILBERT

Z By Scott Adams

~allure Recovery

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control

=== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control

* [f this thread blows up you are screwed

== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control
* [f this thread blows up you are screwed

* S0 you need to do all explicit error handling
WITHIN this single thread

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic
 SCAITTERED all over the code base

== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control
* [f this thread blows up you are screwed

* S0 you need to do all explicit error handling
WITHIN this single thread

* [o make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

* This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic
 SCAITTERED all over the code base

VWe can do better than this!!!

== Typesafe

Lel Il

J

CRASH

2\

akka

=== Typesafe

2\
akka

4. SUPERVISE

2\
akka

4. SUPERVISE

® SUPERVISE - manage another Actor's failures

2\
akka

4.

SUPERVISE

® SUPERVISE - manage another Actor's failures

® Lrror hand
Actors mo
fallure

iNg In actors Is handle by letting

nitor (supervise) each other for

2\
akka

4. SUPERVISE

® SUPERVISE - manage another Actor's failures

® trror handling in actors Is handle by letting
Actors monitor (supervise) each other for

fallure

® [his means that
notification will

f an Ac

'Or crashes, a

De sent |

can react upon -

=== Typesafe

[0 NIS sUpervisor, who

‘he fallure

2\
akka

4. SUPERVISE

® SUPERVISE - manage an

® trror handling in actors
Actors monitor (supervi
fallure

® [his means that If an Ac

other Actor’s fallures

s handle by letting
se) each other for

'Or crashes, a

notification will be sent -

[0 NIS sUpervisor, who

can react upon the failure

® [his provides clean separation of processing

and error handling

=== Typesafe

2\
akka

ERROR
KERNEL

ERROR
KERNEL

akka

ERROR
KERNEL

=== Typesafe akka

ERROR
KERNEL

2\

=== Typesafe akka

NODE 1 NODE 2

O L

)
Akka

SUPERVISE Actor

Fve

"y S|

defaL

It su

ngle actor has a

Dervisor strategy.

Which s usually sufficient.
But it can be overridden.

2\
akka

SUPERVISE Actor

tvery single actor has a
default supervisor strategy.
Which s usually sufficient.

But it can be overridden.

//;lass Supervisor extends UntypedActor {

private SupervisorStrategy strategy = new OneForOneStrategy(
10,

Duration.parse("1 minute"),
new Function<Throwable, Directive>() {
@Override public Directive apply(Throwable t) {

if (t instanceof ArithmeticException) return resume(

else if (t instanceof NullPointerException) return restart

else return escalat
s

});

#Ty@ﬁ/%?freide pub_lic SupervisorStrategy supervisorStrategy() {

~

);
();
e();

AN
akkq

SUPERVISE Actor

//;1ass Supervisor extends UntypedActor { ‘\\
private SupervisorStrategy strategy = new OneForOneStrategy(
10,
Duration.parse("1 minute"),
new Function<Throwable, Directive>() {
@Override public Directive apply(Throwable t) {

if (t instanceof ArithmeticException) return resume();
else if (t instanceof NullPointerException) return restart();
else return escalate();
¥
)

@Override public SupervisorStrategy supervisorStrategy() {
return strateqy;

}

ActorRef worker = context.actorOf(new Props(Worker.class));

public void onReceive(Object message) throws Exception {
if (message instanceof Integer) worker.forward(message);

}

- <

== Typesafe akka

Manage faillure

class Worker extends Actor {

override def preRestart(
reason: Throwable, message: Option[Any]) {
... // clean up before restart

s

override def postRestart(reason: Throwable) {

. // 1nit after restart

\ .

~

/

2\
akka

1 his was

3 ¢

1 his was

3 ¢

Well...It's a start...

we have

we have

TestKit Cluster o FSM
HT TP/REST
| -ventBus
Durable Mailboxes Pub/Sub
Camel
Microkernel
TypedActor SLF4] AMQP
/eroM
erotQ Dataflow ransactors
Agents Extensions

Spring

e

- Experimental module in 2.1

e Gty -
: . . s - Sy .
S g’l?? ‘ ’ 5 R
'.'4":0‘-.0 ;"'-; s w. — ¥
- VAR e NN

Highlights

® Automatic cluster-wide deployment

® Decentralized P2P gossip-based cluster membership
® | cader “election”

® Adaptive load-balancing (based on runtime metrics)

® Automatic replication with automatic fail-over upon
node crash

® Automatic adaptive cluster rebalancing

® Highly available configuration service

AN
=== Typesafe akka

cnable clustering

-

}

_

~

akka {
actor {
provider = "akka.cluster.ClusterActorRefProvider™"
I3
extensions = ["akka.cluster.Cluster"]
cluster {

seed-nodes = |
"akka://ClusterSystem@127.0.0.1:2551",
"akka://ClusterSystem@l27.0.0.1:2552"
]

auto—-down = on

}

o= Typesafe

2\
akka

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1

Configure a clustered router

o= Typesafe

-

akka.actor.deployment {

/statsService/workerRouter {
router = consistent-hashing
nr-of-instances = 100

cluster {
enabled = on

~

max-nr—-of-instances—-per—-node = 3

allow-local-routees = on

¥

/

2\
akka

Cluster L

__ Cluster User Guide

doc.akka.lo/docs/akka/snapshot/cluster/cluster-usage.html |

~— - — — — = — - - - e = T —— — — ———

e —

|
' gaithub.com/akka/akka/tree/master/akka-cluster |
r;

S
2= Typesafe akka

http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
https://github.com/akka/akka/tree/master/akka-cluster
https://github.com/akka/akka/tree/master/akka-cluster

Console

free for developers later in the fall

o

Search (or ‘help’)

=== Typesafe

ve demo

2\
akka

http://console-demo.typesafe.com
http://console-demo.typesafe.com

http://akka.lo
http://letitcrash.com
http://typesate.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

