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Akka (Áhkká)

The name comes from the goddess in the Sami 
(native swedes) mythology that represented all 

the wisdom and beauty in the world. 

It is also the name of a beautiful mountain in 
Laponia in the north part of Sweden
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Manage System Overload



Scale UP & Scale OUT
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What is an Actor?

• Akka's unit of code organization is called an Actor 

• Like Java EE servlets and session beans, Actors is a 
model for organizing your code that keeps many 
“policy decisions” separate from the business logic

• Actors may be new to many in the Java community, 
but they are a tried-and-true concept (Hewitt 1973) 
used for many years in telecom systems with 9 nines 
uptime
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Program at a Higher Level
• Never think in terms of shared state, state 

visibility, threads, locks, concurrent collections, 
thread notifications etc.

• Low level concurrency plumbing BECOMES 
SIMPLE WORKFLOW - you only think about how 
messages flow in the system

• You get high CPU utilization, low latency, high 
throughput and scalability - FOR FREE as part of 
the model

• Proven and superior model for detecting and 
recovering from errors
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Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing,  cluster rebalancing & actor migration

- build extremely loosely coupled and dynamic systems that can 
change and adapt at runtime



Selection of Akka Production Users
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What can I use Actors for?
In different scenarios, an Actor may be an 
alternative to: 

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

- a Finite State Machine (FSM)



So, what is the

Actor Model?
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Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies: 

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

- Designate how it should handle the next message it receives

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors


4 core Actor operations

0.  DEFINE

1.  CREATE

2.  SEND

3.  BECOME

4.  SUPERVISE



public class Greeting implements Serializable {
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public Greeting(String who) { this.who = who; }

}
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public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
    LoggingAdapter log = Logging.getLogger(getContext().system(), this);

    public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

0. DEFINE
Define the message(s) the Actor 

should be able to respond to

Define the Actor class

Define the Actor’s behavior



1. CREATE
• CREATE - creates a new instance of an Actor

• Extremely lightweight (2.7 Million per Gb RAM)

• Very strong encapsulation - encapsulates:

-   state

-   behavior

-   message queue

• State & behavior is indistinguishable from each other

• Only way to observe state is by sending an actor a 
message and see how it reacts
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public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
    LoggingAdapter log = Logging.getLogger(getContext().system(), this);

    public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system

Create the Actor

Actor configuration

Give it a nameYou get an ActorRef back
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Guardian System Actor

Name resolution - like a file-system
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2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless 

• Everything happens REACTIVELY

- An Actor is passive until a message is sent to it, 
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy 
but can't do anything with it until it is triggered by 
a message
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public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
    LoggingAdapter log = Logging.getLogger(getContext().system(), this);

    public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");
greeter.tell(new Greeting("Charlie Parker"));

Full example
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akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Zero code changes

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment
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3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed 
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

• Behaviors are stacked & can be pushed and popped
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Why would I want to do that?
• Let a highly contended Actor adaptively transform 

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation 

• Spawn up (empty) generic Worker processes that 
can become whatever the Master currently needs

• etc. use your imagination

• Very useful once you get the used to it
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become

context.become(new Procedure[Object]() { 
  void apply(Object msg) {
    // new body
    if (msg instanceof NewMessage) {
      NewMessage newMsg = (NewMessage)msg;
      ...
    }
  }
});

Actor context available 
from within an Actor



Load Balancing



Routers

ActorRef router = 
 system.actorOf(
   new Props(SomeActor.class).withRouter(
    new RoundRobinRouter(5)));



Router + Resizer
int lowerBound = 5;
int upperBound = 20;

ActorRef router = 
  system.actorOf(
    new Props(ExampleActor1.class).withRouter(
      new RoundRobinRouter(
        new DefaultResizer(
          lowerBound, upperBound))));



Java7 concurrency



New concurrency utilities in Java 7

• Fork/Join framework

- For parallelizing divide and conquer algorithms

• ThreadLocalRandom

- For minimizing contention using random numbers

• Phaser

- More flexible CyclicBarrier



Fork/Join
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Fork: 
Recursively decompose 
large tasks into sub tasks

Join: 
Await results of recursive 
tasks and combine



Using Work Stealing



ParallelArray

ParallelArray<Student>  students  =  
new  ParallelArray<Student>(fjPool,  data)

double  bestGpa  =  students
        .withFilter(isSenior)
        .withMapping(selectGpa)
        .max();



Other uses of Fork/Join

• Scala Parallel Collections

-‐ collection.par  foreach  print

-‐ collection.par  map  (_  +  1)

• Upcoming Java Parallel Collections? 

• Akka

- ForkJoinPool-based Dispactcher

- ThreadLocalRandom



How does 
Akka use 
Fork/Join?



It started with a benchmark on our 
single 48-core box



Default dispatcher using 
ThreadPoolExecutor



This doesn’t look to good



new ForkJoinPool



This looks much better



After tweaking it some more...

+50 million 
messages per second
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• You are given a SINGLE thread of control

• If this thread blows up you are screwed 

• So you need to do all explicit error handling 
WITHIN this single thread

• To make things worse - errors do not propagate 
between threads so there is NO WAY OF EVEN 
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic 

• SCATTERED all over the code base

We can do better than this!!!

Failure Recovery in Java/C/C# etc.



Just 

LET IT CRASH
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4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting 
Actors monitor (supervise) each other for 
failure

• This means that if an Actor crashes, a 
notification will be sent to his supervisor, who 
can react upon the failure

• This provides clean separation of processing 
and error handling
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SUPERVISE Actor
Every single actor has a 

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.



class Supervisor extends UntypedActor {
  private SupervisorStrategy strategy = new OneForOneStrategy(
    10, 
    Duration.parse("1 minute"), 
    new Function<Throwable, Directive>() {
      @Override public Directive apply(Throwable t) {
        if (t instanceof ArithmeticException)       return resume();
        else if (t instanceof NullPointerException) return restart();
        else                                        return escalate();
    }
  });

  @Override public SupervisorStrategy supervisorStrategy() {
    return strategy;
  }
  
  ActorRef worker = context.actorOf(new Props(Worker.class));
  
  public void onReceive(Object message) throws Exception {
    if (message instanceof Integer) worker.forward(message);
  }
}
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class Supervisor extends UntypedActor {
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    10, 
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      @Override public Directive apply(Throwable t) {
        if (t instanceof ArithmeticException)       return resume();
        else if (t instanceof NullPointerException) return restart();
        else                                        return escalate();
    }
  });

  @Override public SupervisorStrategy supervisorStrategy() {
    return strategy;
  }
  
  ActorRef worker = context.actorOf(new Props(Worker.class));
  
  public void onReceive(Object message) throws Exception {
    if (message instanceof Integer) worker.forward(message);
  }
}

SUPERVISE Actor



class Worker extends Actor {
  ...
  
  override def preRestart(
    reason: Throwable, message: Option[Any]) {
    ... // clean up before restart
  }
  
  override def postRestart(reason: Throwable) {
    ... // init after restart
  }
}

Manage failure



This was

Akka 2.x



This was

Akka 2.x
Well...it’s a start...



...we have much much more



AMQP

Dataflow

...we have much much more
Cluster FSM

Transactors

Spring

Pub/Sub

ZeroMQ

Microkernel

IO
TestKit

Agents

SLF4J

Durable Mailboxes
EventBus

Camel

TypedActor

Extensions

HTTP/REST



Akka Cluster
Experimental module in 2.1



Highlights
• Automatic cluster-wide deployment

• Decentralized P2P gossip-based cluster membership

• Leader “election”

• Adaptive load-balancing (based on runtime metrics)

• Automatic replication with automatic fail-over upon 
node crash

• Automatic adaptive cluster rebalancing

• Highly available configuration service



Enable clustering
akka {  
  actor {
    provider = "akka.cluster.ClusterActorRefProvider"
    ...
  }
 
  extensions = ["akka.cluster.Cluster"]
 
  cluster {
    seed-nodes = [
      "akka://ClusterSystem@127.0.0.1:2551", 
      "akka://ClusterSystem@127.0.0.1:2552"
    ]
 
    auto-down = on
  }
}

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1


Configure a clustered router

akka.actor.deployment  {
    /statsService/workerRouter  {
        router  =  consistent-‐hashing
        nr-‐of-‐instances  =  100

        cluster  {
            enabled  =  on
            max-nr-of-instances-per-node = 3
            allow-‐local-‐routees  =  on
        }
    }
}



doc.akka.io/docs/akka/snapshot/cluster/cluster.html

Cluster Specification

doc.akka.io/docs/akka/snapshot/cluster/cluster-usage.html

Cluster User Guide

github.com/akka/akka/tree/master/akka-cluster

Cluster Code

http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
https://github.com/akka/akka/tree/master/akka-cluster
https://github.com/akka/akka/tree/master/akka-cluster
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http://console-demo.typesafe.com

live demo

http://console-demo.typesafe.com
http://console-demo.typesafe.com


get it and learn more
http://akka.io

http://typesafe.com

http://letitcrash.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/


EOF


