
UP UP AND OUT:
SCALING SOFTWARE WITH AKKA

Jonas Bonér
CTO Typesafe

@jboner

Jonas Bonér
CTO Typesafe

@jboner

Scaling
software with

Scaling
software with
Scaling
software with

Scaling
software with
Scaling
software with

Akka (Áhkká)

The name comes from the goddess in the Sami
(native swedes) mythology that represented all

the wisdom and beauty in the world.

It is also the name of a beautiful mountain in
Laponia in the north part of Sweden

Scaling
software with
Scaling
software with

Manage System Overload

Scale UP & Scale OUT

How
can we achieve this?

How
can we achieve this?

How
can we achieve this?

Let’s use Actors

What is an Actor?

What is an Actor?

What is an Actor?

• Akka's unit of code organization is called an Actor

What is an Actor?

• Akka's unit of code organization is called an Actor

• Like Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
“policy decisions” separate from the business logic

What is an Actor?

• Akka's unit of code organization is called an Actor

• Like Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
“policy decisions” separate from the business logic

• Actors may be new to many in the Java community,
but they are a tried-and-true concept (Hewitt 1973)
used for many years in telecom systems with 9 nines
uptime

Program at a Higher Level

Program at a Higher Level

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

• You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

• You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

• Proven and superior model for detecting and
recovering from errors

Distributable by Design

Distributable by Design

Distributable by Design

• Actors are location transparent & distributable by design

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing, cluster rebalancing & actor migration

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing, cluster rebalancing & actor migration

- build extremely loosely coupled and dynamic systems that can
change and adapt at runtime

Selection of Akka Production Users

What can I use Actors for?

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

- a Finite State Machine (FSM)

So, what is the

Actor Model?

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

- Designate how it should handle the next message it receives

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

4 core Actor operations

0. DEFINE

1. CREATE

2. SEND

3. BECOME

4. SUPERVISE

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

0. DEFINE

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

0. DEFINE
Define the message(s) the Actor

should be able to respond to

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

0. DEFINE
Define the message(s) the Actor

should be able to respond to

Define the Actor class

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

0. DEFINE
Define the message(s) the Actor

should be able to respond to

Define the Actor class

Define the Actor’s behavior

1. CREATE
• CREATE - creates a new instance of an Actor

• Extremely lightweight (2.7 Million per Gb RAM)

• Very strong encapsulation - encapsulates:

- state

- behavior

- message queue

• State & behavior is indistinguishable from each other

• Only way to observe state is by sending an actor a
message and see how it reacts

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system Actor configuration

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system Actor configuration

Give it a name

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system

Create the Actor

Actor configuration

Give it a name

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");

CREATE Actor

Create an Actor system

Create the Actor

Actor configuration

Give it a nameYou get an ActorRef back

Guardian System Actor

Actors can form hierarchies

Guardian System Actor

system.actorOf(Props[Foo], “Foo”)

Actors can form hierarchies

Foo

Guardian System Actor

system.actorOf(Props[Foo], “Foo”)

Actors can form hierarchies

Foo

Guardian System Actor

context.actorOf(Props[A], “A”)

Actors can form hierarchies

A

Foo

Guardian System Actor

context.actorOf(Props[A], “A”)

Actors can form hierarchies

A

B

BarFoo

C

B
E

A

D

C

Guardian System Actor

Actors can form hierarchies

A

B

BarFoo

C

B
E

A

D

C

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

/Foo/A/B

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

/Foo/A/B

/Foo/A/D

Guardian System Actor

Name resolution - like a file-system

2. SEND

2. SEND
• SEND - sends a message to an Actor

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens REACTIVELY

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens REACTIVELY

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens REACTIVELY

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens REACTIVELY

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy
but can't do anything with it until it is triggered by
a message

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");
greeter.tell(new Greeting("Charlie Parker"));

SEND message

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");
greeter.tell(new Greeting("Charlie Parker"));

SEND message

Send the message

public class Greeting implements Serializable {
public final String who;
public Greeting(String who) { this.who = who; }

}

public class GreetingActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(), this);

 public void onReceive(Object message) throws Exception {
if (message instanceof Greeting)

log.info("Hello " + ((Greeting) message).who);
}

}
}

ActorSystem system = ActorSystem.create("MySystem");
ActorRef greeter = system.actorOf(new Props(GreetingActor.class), "greeter");
greeter.tell(new Greeting("Charlie Parker"));

Full example

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

For the Greeter actor

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path

For the Greeter actor

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol

For the Greeter actor

akka://

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System

For the Greeter actor

akka://MySystem

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname

For the Greeter actor

akka://MySystem@machine1

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Zero code changes

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment

3. BECOME

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

• Behaviors are stacked & can be pushed and popped

Why would I want to do that?

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

• etc. use your imagination

Why would I want to do that?
• Let a highly contended Actor adaptively transform

himself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

• etc. use your imagination

• Very useful once you get the used to it

become

context.become(new Procedure[Object]() {
 void apply(Object msg) {
 // new body
 if (msg instanceof NewMessage) {
 NewMessage newMsg = (NewMessage)msg;
 ...
 }
 }
});

become

context.become(new Procedure[Object]() {
 void apply(Object msg) {
 // new body
 if (msg instanceof NewMessage) {
 NewMessage newMsg = (NewMessage)msg;
 ...
 }
 }
});

Actor context available
from within an Actor

Load Balancing

Routers

ActorRef router =
 system.actorOf(
 new Props(SomeActor.class).withRouter(
 new RoundRobinRouter(5)));

Router + Resizer
int lowerBound = 5;
int upperBound = 20;

ActorRef router =
 system.actorOf(
 new Props(ExampleActor1.class).withRouter(
 new RoundRobinRouter(
 new DefaultResizer(
 lowerBound, upperBound))));

Java7 concurrency

New concurrency utilities in Java 7

• Fork/Join framework

- For parallelizing divide and conquer algorithms

• ThreadLocalRandom

- For minimizing contention using random numbers

• Phaser

- More flexible CyclicBarrier

Fork/Join

Algorithm

Fork:
Recursively decompose
large tasks into sub tasks

Join:
Await results of recursive
tasks and combine

Algorithm

Fork:
Recursively decompose
large tasks into sub tasks

Join:
Await results of recursive
tasks and combine

Algorithm

Fork:
Recursively decompose
large tasks into sub tasks

Join:
Await results of recursive
tasks and combine

Algorithm

Fork:
Recursively decompose
large tasks into sub tasks

Join:
Await results of recursive
tasks and combine

Using Work Stealing

ParallelArray

ParallelArray<Student> students =
new ParallelArray<Student>(fjPool, data)

double bestGpa = students
 .withFilter(isSenior)
 .withMapping(selectGpa)
 .max();

Other uses of Fork/Join

• Scala Parallel Collections

-‐ collection.par foreach print

-‐ collection.par map (_ + 1)

• Upcoming Java Parallel Collections?

• Akka

- ForkJoinPool-based Dispactcher

- ThreadLocalRandom

How does
Akka use
Fork/Join?

It started with a benchmark on our
single 48-core box

Default dispatcher using
ThreadPoolExecutor

This doesn’t look to good

new ForkJoinPool

This looks much better

After tweaking it some more...

+50 million
messages per second

Failure Recovery

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

• SCATTERED all over the code base

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

• SCATTERED all over the code base

We can do better than this!!!

Failure Recovery in Java/C/C# etc.

Just

LET IT CRASH

4. SUPERVISE

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

• This means that if an Actor crashes, a
notification will be sent to his supervisor, who
can react upon the failure

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

• This means that if an Actor crashes, a
notification will be sent to his supervisor, who
can react upon the failure

• This provides clean separation of processing
and error handling

Fault-tolerant
onion-layered
Error Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Node 1 Node 2

SUPERVISE Actor
Every single actor has a

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.

class Supervisor extends UntypedActor {
 private SupervisorStrategy strategy = new OneForOneStrategy(
 10,
 Duration.parse("1 minute"),
 new Function<Throwable, Directive>() {
 @Override public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) return resume();
 else if (t instanceof NullPointerException) return restart();
 else return escalate();
 }
 });

 @Override public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }

 ActorRef worker = context.actorOf(new Props(Worker.class));

 public void onReceive(Object message) throws Exception {
 if (message instanceof Integer) worker.forward(message);
 }
}

SUPERVISE Actor
Every single actor has a

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.

class Supervisor extends UntypedActor {
 private SupervisorStrategy strategy = new OneForOneStrategy(
 10,
 Duration.parse("1 minute"),
 new Function<Throwable, Directive>() {
 @Override public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) return resume();
 else if (t instanceof NullPointerException) return restart();
 else return escalate();
 }
 });

 @Override public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }

 ActorRef worker = context.actorOf(new Props(Worker.class));

 public void onReceive(Object message) throws Exception {
 if (message instanceof Integer) worker.forward(message);
 }
}

SUPERVISE Actor

class Worker extends Actor {
 ...

 override def preRestart(
 reason: Throwable, message: Option[Any]) {
 ... // clean up before restart
 }

 override def postRestart(reason: Throwable) {
 ... // init after restart
 }
}

Manage failure

This was

Akka 2.x

This was

Akka 2.x
Well...it’s a start...

...we have much much more

AMQP

Dataflow

...we have much much more
Cluster FSM

Transactors

Spring

Pub/Sub

ZeroMQ

Microkernel

IO
TestKit

Agents

SLF4J

Durable Mailboxes
EventBus

Camel

TypedActor

Extensions

HTTP/REST

Akka Cluster
Experimental module in 2.1

Highlights
• Automatic cluster-wide deployment

• Decentralized P2P gossip-based cluster membership

• Leader “election”

• Adaptive load-balancing (based on runtime metrics)

• Automatic replication with automatic fail-over upon
node crash

• Automatic adaptive cluster rebalancing

• Highly available configuration service

Enable clustering
akka {
 actor {
 provider = "akka.cluster.ClusterActorRefProvider"
 ...
 }

 extensions = ["akka.cluster.Cluster"]

 cluster {
 seed-nodes = [
 "akka://ClusterSystem@127.0.0.1:2551",
 "akka://ClusterSystem@127.0.0.1:2552"
]

 auto-down = on
 }
}

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1

Configure a clustered router

akka.actor.deployment {
 /statsService/workerRouter {
 router = consistent-‐hashing
 nr-‐of-‐instances = 100

 cluster {
 enabled = on
 max-nr-of-instances-per-node = 3
 allow-‐local-‐routees = on
 }
 }
}

doc.akka.io/docs/akka/snapshot/cluster/cluster.html

Cluster Specification

doc.akka.io/docs/akka/snapshot/cluster/cluster-usage.html

Cluster User Guide

github.com/akka/akka/tree/master/akka-cluster

Cluster Code

http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
http://doc.akka.io/docs/akka/snapshot/cluster/cluster.html
https://github.com/akka/akka/tree/master/akka-cluster
https://github.com/akka/akka/tree/master/akka-cluster

Typesafe Console

free for developers later in the fall

Typesafe Console

free for developers later in the fall

http://console-demo.typesafe.com

live demo

http://console-demo.typesafe.com
http://console-demo.typesafe.com

get it and learn more
http://akka.io

http://typesafe.com

http://letitcrash.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

EOF

