
TRANSLATING DART TO EFFICIENT
JAVASCRIPT

Kasper Lund
Google

Translating Dart to
efficient JavaScript

Kasper Lund, Google

Who am I?

Kasper Lund, software engineer at Google

Projects
● OOVM: Embedded Smalltalk system
● V8: High-performance JavaScript engine
● Dart: Structured programming for the web

What is Dart?

● Unsurprising object-oriented programming language
● Class-based single inheritance
● Familiar syntax with proper lexical scoping
● Optional static type annotations

main() {
 for (int i = 99; i > 0; i--) {
 print("$i bottles of beer on the wall,");
 print("Take one down and pass it around ...");
 }
}

Dart execution and deployment

Dart source

Dart-to-JavaScript
compiler

JavaScript

Dart virtual
machine

runs on all modern browsers

in browser or standalone

Dart-to-JavaScript compiler goals

● Support Dart apps on all modern browsers
○ Tested on Chrome, Firefox, IE, and Safari
○ Ensures that the use of the Dart VM is optional

● Generate efficient and compact JavaScript

● Implement proper Dart semantics
○ Check that the right number of arguments is passed
○ No implicit coercions to numbers or strings
○ Range checks for list access

Example: What's the point?
Source code in Dart

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 ...
}

Example: What's the point?
Compiled JavaScript code

$.main = function() {
 var p = $.Point(2, 3);
 var q = $.Point(3, 4);
 var distance = p.distanceTo$1(q);
 ...
};

Example: What's the point?

● Static functions are put on the $ object
○ Top-level functions such as $.main
○ Factory functions such as $.Point

● Method calls are translated to functions calls
○ Arity is encoded in the selector (distanceTo$1)
○ Supports named optional arguments

Tree shaking

Resolver queue

Parser

Resolver

Compilation queue

Builder

Code generator

Emitter

File reader

Diet parser

The queues drive the on-demand
compilation of the various parts by
keeping track of information about:

 - Instantiated classes
 - Used selectors (method names)
 - Type information for receivers

Code after tree shaking

Diet parsed

Resolved

Compiled

Language challenges

User-definable operators

● JavaScript implicitly converts + inputs to
numbers or strings

● Using method calls for all arithmetic
operations is too slow

● Solution: Track types and use JavaScript +
when it is safe to do so

Number.prototype.add = function(x) { return this + x; };
Number.prototype.sub = function(x) { return this - x; };

Range checking

● JavaScript has no notion of out of bounds
access and all keys are treated as strings

● Solution: Insert explicit index checks unless
we can prove we do not need them

Keep on truckin'

JavaScript

Example: Sum the elements of a list
Source code in Dart

main() {
 var list = [2, 3, 5, 7];
 var sum = 0;
 for (var i = 0; i < list.length; i++) {
 sum += list[i];
 }
 print("sum = $sum");
}

Example: Sum the elements of a list
Compiled JavaScript code

$.main = function() {
 var list = [1, 2, 3, 4];
 for (var t1 = list.length, sum = 0, i = 0; i < t1; ++i) {
 // Check that the index is within range before
 // reading from the list.

 if (i < 0 || i >= t1) throw $.ioore(i);
 var t2 = list[i];
 // Check that the element read from the list is
 // a number so it is safe to use + on it.

 if (typeof t2 !== 'number') throw $.iae(t2);
 sum += t2;
 }
 $.print('sum = ' + $.S(sum));
};

Compact class definitions

● Lots of classes means lots of boilerplate for
creating instances and accessing fields

● Solution: Use a helper for defining classes
and use dynamic code generation to cut
down on the boilerplate

Compact class definitions
Compiled JavaScript code

$.Point = {"": ["x", "y"],
 "super": "Object",
 distanceTo$1: function(other) {
 var dx = this.x - other.x;
 var dy = this.y - other.y;
 return $.sqrt(dx * dx + dy * dy);
 }
};

Compact class definitions
Compiled JavaScript code

Essentially, we turn the field list ["x","y"] into the
following code using new Function(...) at runtime:

function Point(x, y) {
 this.x = x;
 this.y = y;
}

Point.prototype.get$x = function() { return this.x; };
Point.prototype.get$y = function() { return this.y; };

We also support field lists like ["x=",...] which
automatically introduces a setter too.

Closures

● Closures support named arguments and we
must check the number of arguments

● Allocating small JavaScript objects is fast!
○ New JavaScript closure ~ new object with six fields

● Solution: Treat closures as class instances
○ Use instance fields for captured (boxed) variables
○ Use methods for implementing calling conventions

Example: Closures
Source code in Dart

main() {
 var list = [1, 2, 3];
 print(list.map((each) => list.indexOf(each)));
}

Example: Closures
Compiled JavaScript code

$.main = function() {
 var list = [1, 2, 3];
 $.print($.map(list, new $.main$closure(list)));
};

$.main$closure = {"": ["list"],
 call$1: function(each) {
 return $.indexOf$1(this.list, each);
 }
};

Generating code

Intermediate representations

Dart syntax tree

Builder

Code generator

JavaScript syntax tree

SSA graph

+

2 3

t0 = constant(2)
t1 = constant(3)
t2 = call(+, t0, t1)

SSA: Basic block graph

max(x, y) {
 var result;
 if (x >= y) {
 print(x);
 result = x;
 } else {
 print(y);
 result = y;
 }
 return result;
}

B0: t0 = parameter(x)
 t1 = parameter(y)
 t2 = call(>=, t0, t1)
 if (t2) goto B1
 else goto B2

B1: t3 = call(print, t0)
 goto B3

B2: t4 = call(print, t1)
 goto B3

B3: t5 = phi(t0, t1)
 return t5

SSA: Dominator tree

B0

B1 B2

B3

B0: t0 = parameter(x)
 t1 = parameter(y)
 t2 = call(>=, t0, t1)
 if (t2) goto B1
 else goto B2

B1: t3 = call(print, t0)
 goto B3

B2: t4 = call(print, t1)
 goto B3

B3: t5 = phi(t0, t1)
 return t5

Optimizations

● Type propagation
● Function inlining
● Global value numbering
● Loop-invariant code motion

Global value numbering

● Two instructions are equal if they perform
the same operation on the same inputs

● Executing an instruction can have or be
affected by side-effects

● Optimization: Replace instructions with
equal ones from dominators if no side-
effects can affect the outcome

Global value numbering (1)
wat(x) => (x + 1) + (x + 1);

t0 = parameter(x, type = num)
t1 = constant(1)
t2 = call(+, t0, t1)
t3 = constant(1)
t4 = call(+, t0, t3)
t5 = call(+, t2, t4)
return t5

Global value numbering (2)
wat(x) => (x + 1) + (x + 1);

t0 = parameter(x, type = num)
t1 = constant(1)
t2 = call(+, t0, t1)
t3 = constant(1)
t4 = call(+, t0, t1)
t5 = call(+, t2, t4)
return t5

Global value numbering (3)
wat(x) => (x + 1) + (x + 1);

t0 = parameter(x, type = num)
t1 = constant(1)
t2 = call(+, t0, t1)

t4 = call(+, t0, t1)
t5 = call(+, t2, t2)
return t5

Global value numbering (4)
wat(x) => (x + 1) + (x + 1);

t0 = parameter(x, type = num)
t1 = constant(1)
t2 = call(+, t0, t1)
t5 = call(+, t2, t2)
return t5

Global value numbering (5)
wat(x) => (x + 1) + (x + 1);

$.wat = function(x) {
 var t2 = x + 1;
 return t2 + t2;
};

Global value numbering algorithm

● Walk the dominator tree while keeping a
hash set of live values
○ Replace instructions with equal instructions from set
○ Add instructions that are not replaced to the set
○ Copy the set before visiting dominated children

● When visiting an instruction that has side
effects, kill all values in the set that are
affected by those side effects

Global value numbering algorithm

B0

B1 B2

B3

Side-effects in B2 may kill
values in the initial live set for
B3 because B2 is on a control
flow path from B0 to B3

B0

B1 B2

B3

Control flow graph Dominator tree

Speculative optimizations

● Even after type propagation we may have
instructions with unknown types
○ Cannot safely use primitive JavaScript operations
○ Don't know if the instructions have side-effects

● Optimization: Try to guess the type of an
instruction based on its inputs and uses

Speculative optimizations (1)
It would be great if x was a JavaScript array

sum(x) {
 var result = 0;
 for (var i = 0; i < x.length; i++) {
 result += x[i];
 }
 return result;
}

Speculative optimizations (2)
We really hope x is a JavaScript array

$.sum = function(x) {
 if (!$.isJsArray(x)) return $.sum$bailout(1, x);
 var result = 0;
 for (var t1 = x.length, i = 0; i < t1; ++i) {
 if (i < 0 || i >= t1) throw $.ioore(i);
 var t2 = x[i];
 if (typeof t2 !== 'number') throw $.iae(t2);
 result += t2;
 }
 return result;
};

Speculative optimizations (3)
What if it turns out x is not a JavaScript array?

$.sum$bailout = function(state, x) {
 var result = 0;
 for (var i = 0; $.ltB(i, $.get$length(x)); ++i) {
 var t1 = $.index(x, i);
 if (typeof t1 !== 'number') throw $.iae(t1);
 result += t1;
 }
 return result;
};

Heuristics for speculating

● To avoid generating too much code we need
to control the speculative optimizations

● Hard to strike the right balance between
optimizing too little and too much

● Current solution: Only speculate about
types for values that are used from within
loops

Profile guided optimizations

What if we aggressively speculated about types
and used profiling to figure out if it was helpful?

1. Use speculative optimizations everywhere!
2. Profile the resulting code
3. Re-compile with less speculation

Don't keep optimized methods that are rarely
used or always bail out

Dealing with control flow

● It is hard to translate generic SSA graph to
JavaScript (no arbitrary jumps)

● Solution: Try to keep track of the Dart
code's structure and compile back to it

● Use a generic, but less efficient way when
this is not possible

Dealing with control flow (1)
Is that an index bounds check in your condition?

sum(x) {
 var result = 0;
 for (var i = 0; x[i] != null; i++) {
 result += x[i];
 }
 return result;
}

Dealing with control flow (2)
Bounds check turns the condition into a statement

$.sum = function(x) {
 ...
 var t1 = x.length;
 var i = 0;
 while (true) {
 if (i < 0 || i >= t1) throw $.ioore(i);
 if (x[i] == null) break;
 ...
 }
 ...
};

Status

Code size

● Size of the generated code has improved
since our first release!

● If your app translates to sizeable chunks of
JavaScript it could be because of imports

● Work on supporting minification is in
progress (use --minify option)

Performance

Conclusions

● You should write your web apps in Dart
○ Be more productive with a better toolchain
○ Deploy to all modern browsers through JavaScript
○ Let us worry about the low-level optimizations

● We want to improve the web platform!
○ Better support for programming in the large
○ Faster application startup in particular on mobile
○ More predictable and better runtime performance

Questions?

