
No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

GOTO 2012
Linked Data as a new model for
Application Integration

Martin Nally, VP & IBM Fellow
CTO, IBM Rational

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

What is Linked Data?

1.  Use URIs as names for things
2.  Use HTTP URIs so that people can look up those names.
3.  When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL)
4.  Include links to other URIs. so that they can discover more things.

HTTP web of DATA “resources”, instead of HTML pages

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Linked Data is not new
Publish Data on the

Internet §  Use it to provide new value

But our usage of Linked Data – Application Integration - is a bit different

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Why do we need a new approach to integration?

Top 3 reasons Application Lifecycle Management (ALM)
fails to deliver promise

– Distracted by day-to-day delivery pressures – 78%
– Tools don’t integrate properly – 62%
–  Lack the necessary internal expertise – 56%

Source: Forrester study commissioned by Wipro, 2008

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

SCM

Defect Tool

Test Tool

Requirements
Tool

Tool integration today

Test 1 Test 3

Bug 3
Bug 4

Bug 1
Bug 2

Change 2
Change 1

Build 1
Build 2

Data Data

Data

Reqt 1 Reqt 3
Reqt 2 Reqt 4

Data

Data

Build Tool

Copy of Bug 2

Test 2

Copy of Test 2

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Source: Presentation on IBM’s AD/Cycle, circa 1990!

What did we say about this 20 years ago?

“A recent
survey of over 1000 businesses
indicated that the
backlog for applications is
approximately four years…”

“businesses
are also faced with the high costs of
maintaining
existing inventories of applications
and a shortage of
experienced programming skills..”

“requirements and specifications
are
passed on paper from product
planners to designers
and from designers to coders…”

“proliferation
of unrelated tools,
methodologies, and
manual data transformations…”

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

What is the state-of-the-art today?

Most other vendors still trying to build AD/Cycle
Requires all tools to integrate around centralized repository

– Data import (duplication) for foreign tools
Works as well as other centrally-planned economies have worked

– Do your company’s needs match a fixed, pre-planned solution, or is an
open, integrated economy a better model?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Build Tool

SCM

Test Tool

Requirements
Tool

Defect Tool

Defect ToolB

A new approach: Linked [Lifecycle] Data

Build 1

Change 2
Build 2

Change 1

Bug 2

Bug 3

Bug 4

Bug 1
Test 4

Test 1

Test 3

Test 2

Reqt 1

Reqt 2

Reqt 4

Reqt 3
SCM B

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

What is RDF?

A “universal” data representation for the web
–  Relational, IMS, COBOL, XML, object, … data can all be expressed in RDF

A very simple model and syntax for representing data on the world wide web
–  RDF is like property, value pairs
–  RDF adds “subject” – what is it the property of – so triples, not pairs
–  RDF properties are themselves resources with URLs.

That’s about it – most of the rest is hype and pretention, or detail
–  RDF also can describe containers and collections
–  RDF has the notion of type, but it’s not similar to OO type, it’s like type in the natural world.
–  There is a language for querying over RDF, called SPARQL. (SPARQL adds graphs, so quadruples, not

triples)
–  You can write down RDF data in XML, as a twisted experiment of no value, but there are much nicer,

more natural formats

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

RDF example - http://example.com/r1

@prefix oslc-rm: <http://open-services.net/ns/rm#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
<http://example.com/r1> rdf:type oslc-rm:Requirement.
< http://example.com/r1 > dc:title "Requirement 1".
< http://example.com/r1 > dc:description "The system should
respond within 1 second".

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

RDF example - http://example.com/tc1

@prefix oslc-qm: <http://open-services.net/ns/qm#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
<http://example.com/tc1> rdf:type oslc-qm:TestCase.
<http://example.com/tc1> dc:title "TestCase 1".
<http://example.com/tc1> dc:description "Verifies the system responds within 1
second".
<http://example.com/tc1> oslc-qm:validates <http://example.com/r1>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

RDF – example http://example.com/r1

http://example.com/r1

rdf:type: oslc-rm:Requirement.
dc:title: "Requirement 1".
dc:description:

 "The system should
respond within 1 second".

http://example.com/tc1

rdf:type: oslc-qm:TestCase.
dc:title "TestCase 1".
dc:description "Verifies
the system responds within 1
second".

oslc-qm:validates

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

RDF example2 - http://example.com/notr1ortc1

@prefix oslc-rm: <http://open-services.net/ns/rm#>.
@prefix oslc-qm: <http://open-services.net/ns/qm#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
<http://example.com/r1> rdf:type oslc-rm:Requirement.
< http://example.com/r1 > dc:title "Requirement 1".
< http://example.com/r1 > dc:description "The system should respond within 1s".
<http://example.com/tc1> rdf:type oslc-qm:TestCase.
<http://example.com/tc1> dc:title "TestCase 1".
<http://example.com/tc1> dc:description "Verifies the system responds within 1s".
<http://example.com/tc1> oslc-qm:validates <http://example.com/r1>.

http://example.com/r1 and http://example.com/tc1 are completely empty!

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

RDF – example http://example.com/notr1ortc1

http://example.com/r1 http://example.com/tc1

http://example.com/notr1ortc1
@prefix oslc-rm: <http://open-services.net/ns/rm#>.
@prefix oslc-qm: <http://open-services.net/ns/qm#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
<http://example.com/r1> rdf:type oslc-rm:Requirement.
< http://example.com/r1 > dc:title "Requirement 1".
< http://example.com/r1 > dc:description "The system should respond within 1s".
<http://example.com/tc1> rdf:type oslc-qm:TestCase.
<http://example.com/tc1> dc:title "TestCase 1".
<http://example.com/tc1> dc:description "Verifies the system responds within 1s".
<http://example.com/tc1> oslc-qm:validates <http://example.com/r1>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Understanding RDFS and OWL

• RDFS introduces classes and properties
•  They are not the same as the classes and properties you know from OO
•  Everything about RDFS ad OWL is backwards from what you know

–  In OO, classes come first, then you have instances. In RDF, instances
come first and then you can (optionally) have classes

–  In OO, instances have 1 type. In RDF, instances can have lots of types,
or none at all

–  In OO, classes constrain instances (e.g. properties, multiplicity). In RDF
classes can only infer new information, cannot verify existing info

•  The challenge with RDFS/OWL is unlearning what you know.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Linked Data – a potential major transformation

There have only been two major model shifts in my 30+
year career.

– First was shift to client server from mainframe. This is the second.

Adopting this simple model turns everything on its head.
– The HTTP resources are central, your application a minor detail
– The HTTP URLs are permanent reality, the data in the database a detail
– Closed, fixed in scope -> open, extensible scope
– Fixed in time -> everything evolves over time
– Don’t import data – address it where it is

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

But there is a problem

Existing experience with Linked Data is read-only.
For writing, many basic questions need to be answered

–  It seems obvious that you POST to create, but what do you POST to?
–  How do I find the things that already exist?
–  What media types should I use?
–  What about resources that cannot be represented in RDF?
–  What primitive types should I use?
–  What standard vocabularies should I use?
–  Links - What if links have properties? Back-links?
–  How do you describe “shapes” or “schemas”?
–  PUT or Patch for update?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Solution

Good news
– There are simple answers to most of these questions using technologies

that already exist – little or no invention required

Bad News
– The answers are often not obvious and are definitely not well-known

Action
– New W3C workgroup, aiming at new W3C recommendation
•  “Linked Data Platform”
•  http://www.w3.org/2012/ldp/wiki/Main_Page

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Basic Profile Resources and Containers

• Observation - 90% of all applications are just records and lists
–  Lists answer the questions “where do I POST to and how do I find things

that already exist?”
• Conclusion – if we describe how you do records and lists with Linked Data,

we will have enabled 99% of applications in this style
•  IBM wrote a specification for LD records and lists and offered it to the W3C

– Being used as the basis for the LDP spec

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Atom Publishing - Lists for XML programmers

POST /collection/1 HTTP/1.1
Host: example.org
Content-Type: application/atom+xml;type=entry
Content-Length: nnn
Slug: First Post
<?xml version="1.0"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content>Some text.</content>
</entry>

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Example Feed</title>
<link href="http://example.org/"/>
<updated>2003-12-13T18:30:02Z</updated>
<author><name>John Doe</name></author>
<id>urn:uuid:60a76c80-0003939e0af6</id>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content>Some text.</content>
 </entry>
</feed>

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

APP Accommodating RDF? First try

POST /collection/1 HTTP/1.1
 Host: example.org
 Content-Type: application/atom+xml;type=entry
 Content-Length: nnn
 Slug: First Post

 <?xml version="1.0"?>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content type="application/rdf+xml">
 <-- RDF/XML content here -->
 </content>
 </entry>

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

APP Accommodating RDF. Second try.

 @prefix atom: <http://www.w3.org/2005/Atom/>.
 <http://example.org/myData/collection1>
 a atom:Feed;
 atom:title "Example feed";
 atom:updated "2003-12-13T18:30:02Z";
 atom:author [atom:name "John Doe"];
 atom:id <urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6>;
 atom:entries
 ([a atom:Entry;
 atom:title "Atom-Powered Robots Run Amok";
 atom:alternate <http://example.org/2003/12/13/atom03>;
 atom:id <urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a>;
 atom:updated "2003-12-13T18:30:02Z";
 atom:author [atom:name "John Doe"];
 atom:content [#more RDF here for the triples that define the content]
]
 [#another Atom entry]).

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

This simply is not how you design with RDF

•  Atom “entries” are just getting around the lack of a “subject” in RDF
• Custom media types are not a good idea
•  Atom title, author, updated are redundant with other RDF vocabularies
•  uuid not needed/used in Linked Data (use http urls)
•  Atom “collection” redundant with other RDF concepts (and actually even

those concepts are not needed anyway for this problem)

OK, so how do you design with RDF?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

How do you express a collection with RDF?

•  You could use rdf:Seq or rdf:List (not query-friendly)
•  But RDF predicates automatically define collections

<subjectURL>
 <predicateURL>
 <firstElementURL>,
 <secondElementURL>,
 ... ,
 <lastElementURL>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

APP equivalent for RDF with no new concepts!

•  POST to a “collection resource” to create resource and add a new triple
• Delete and element to delete resource and remove triple
• GET to see the existing triples/resources

#representation of collection resource
<collectionURL>
<subjectURL>
 <predicateURL>
 <firstElementURL>,
 <secondElementURL>,
 ... ,
 <lastElementURL>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Basic writable collection in RDF – APP example

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
<http://example.org/collection1>
 rdfs:member <http://example.org/1225c695-80da344efa6a>;
 rdfs:member <http://example.org/1225c695-80da344efa6b>.

Use whatever predicate you like –
http://www.w3.org/2000/01/rdf-schema#member is just an example

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

But APP does much more

• With APP, data for the entries was in the feed – I did not have to GET each
entry to see their data, I can just GET the feed.

•  You want data about the entries – RDF lets you put it there!
– No invention required

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Writable RDF collection with “entry data”

representation of <collectionURL>
<subjectURL>
 <predicateURL>
 <firstElement>,
 <secondElement>,
 ... ,
 <lastElement>.
triples about firstElement begin
<firstElement>
 <predicate1> value1;

<predicate2> value2;
 #more triples
 <predicateN> valueN.
triples for other elements
<lastElement>
 <predicate1> value1l;
 <predicate2> value2l;
 #more triples
 <predicateN> valueNl.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Minor problem

• Which triples define the collection?
– Subject URL may not be collection URL
–  “collection predicate” may not be rdfs:member

• Reluctantly, we do finally have to invent something new

@prefix bp: <http://open-services.net/ns/basicProfile#>.
<http://example.org/netWorth/nw1/assetContainer>
 a bp:Container;
 bp:membershipSubject <http://example.org/netWorth/nw1>;
 bp:membershipPredicate <http://example.org/vocab#asset>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

But APP has more

• Read the LDP spec if you want to see how pagination and ordering are
done

•  As before RDF already knows how to do almost all of it already – someone
just has to standardize the pattern

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Basic Profile Resources

•  That is the “list” part, what about the “record” part
•  As before, mostly just a few “conventions” or “patterns of use” of existing

technologies - not much to say
•  Perhaps one item is worth discussion - update

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

PUT, PATCH, documents and data

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Backup

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

An example showing why subject is important -
http://vh1.example.com/testcases/defects?oslc.where=oslc_cm:inprogress="true"

@prefix oslc-qm: <http://open-services.net/ns/qm#>.
@prefix determs: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
<> oslc:nextPage <http://vh1.example.com/testcases/defects/..../page2>.
<http://vh1.example.com/defects>
 rdf:member <http://vh1.example.com/defects/00001>;
 rdf:member <http://vh1.example.com/defects/00002>;
 rdf:member <http://vh1.example.com/defects/00003>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Another example showing use of subject -
http://members.cox.net/martin_nally

@prefix dbpp: <http://dbpedia.org/property/>.
@prefix dbpr: <http://dbpedia.org/resource/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix determs: <http://purl.org/dc/terms/>.
<> dcterms:description “a web site for Martin Nally”.
<http://martin-nally.name>
 dbpp:birthname "Martin Paul Nally";
 dbpp:birthDate "1957-01-05"^^xsd:date;
 dbpp:birthPlace dbpr:Scotland;
 foaf:depiction <http://members.cox.net/martin_nally/Martin_Nally.6.email.jpg>.

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line 36

Open Services for Lifecycle Collaboration
Specifications for linked lifecycle data

An open community of individuals from
industry, commercial tools vendors,
systems integrators, open source
projects, and academia.

Focusing on sharing of lifecycle data
(requirements, test cases, change
requests) between tools and across the
lifecycle.

Taking a technology-neutral approach
based on Internet standards and
protocols.

Operating at open-services.net

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line 37

OSLC Community

Eleven workgroups operating at
open-services.net

•  Intensive focus in 2010 on Core and CLM
related specs (CM, RM, QM, Arch Mgmt,
SCM)

•  PLM/ALM workgroup defining cross-cutting
scenarios and driving a systems perspective

Continuing to grow
•  345+ registered community members (up

from 70 people at RSC 2009)
•  Individuals from 34+ different companies

have participated in OSLC workgroups (up
from 5 companies at RSC 2009)

Accenture
APG
Black Duck
Boeing
BSD Group
Citigroup
EADS
Emphasys Group
Empulsys
Ericsson
Fokus Fraunhofer
Galorath
General Motors
Health Care Services Corp
IBM
Institut TELECOM
Integrate Systems

Lender Processing Services
Northrop Grumman
Oracle
QSM
Rally Software
Ravenflow
Shell
Siemens
Sogeti
SourceGear/Teamprise
State Street
Tasktop (Eclipse Mylyn)
Thales
Tieto
TOPIC Embedded Systems
UrbanCode
WebLayers

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

OSLC Core Spec

Applies to all resources in an OSLC system.
Tries to answer some simple questions on how to use linked data

–  What URLs can I POST to create new resources?
•  What properties could/should I set when POSTing to these URLs?

–  How do I query the resources already POSTed at an URL?
•  What properties might be available to query on a set of resources?

–  How is pagination of large representations handled?
–  How can I delegate to the UI of another service, instead of dealing with its data?
–  Best practices for expressing hyper-links between resources (e.g. link properties)
–  Partial Update (there is a reason that SQL has no equivalent of PUT, only PATCH)

A bit like a superset of APP, except …
–  Linked data compatible
–  Generic - doesn’t require you to model your domain as a blog (feed, entry)
–  Simpler, Solves more problems

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Other OSLC specs

Adhere to Core spec and add domain-specific vocabularies
–  Change Management
–  Requirements
–  Assets
–  Tests
–  Estimation
–  Source Code Management/ versioning
–  Reporting
–  Architecture
–  Project/portfolio
–  Automation (e.g. build)

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Ontologies (odious, pretentious word)

• Need to agree on common terms like “name”, “type”, “title”, “identifier”
– Want to query across all resources, not just within types
– We like Dublin Core. Maybe rdfs (for label). Maybe foaf for Person.

• Need to agree on some domain-specific terms
– Don’t try to define all the properties of a resource like defect
•  Every team/organization wants different ones

– Focus on those properties that are important for integration scenarios
•  E.g. Is a defect closed?
•  E.g. What requirement does this test-case test?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Finding and analyzing data

Text index SPARQL
triple store

Search
Query
Reporting
Traceability

Requirements
Tool

Test Tool

Defect Tool Bug 2

Bug 3

Bug 4

Bug 1

Test 1

Test 4 Build 2

Test 3

Test 2

Reqt 1

Reqt 2

Reqt 4

Reqt 3

Change 1

Build Tool

Build 1

SCM

Change 2

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Defining process rules

Requirements
Tool

Test Tool

Defect Tool Bug 2

Bug 3

Bug 4

Bug 1

Test 1

Test 4

Administrator
Team Lead

Build 2

Test 3

Test 2

Reqt 1

Reqt 2

Reqt 4

Reqt 3

Change 1

Build Tool

Build 1

SCM

Change 2

Admin
Console

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

friends don’t let friends do …

XML
– OSLC core spec has some “features” to keep the XML zombies happy L
•  RDF/XML mandated
•  forcing “blank nodes” to ease XML parsing (“Local Resource”) Web Services

ATOM Publishing Protocol
Data formats or interfaces specified in programming
language technologies

– Data specified with object-oriented concepts (classes, instances)

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Think conceptually, don’t think like a programmer

“a list of bugs”, “the first page of a list of bugs” and “bugs
whose id is 8” are independent resources – not one
resource with “arguments”.

–  http://example.com/bugs
–  http://example.com/bugs?oslc.where=dcterms:identifier=%228%22
–  http://example.com/bugs?oslc.paging=true

“oslc:pagination=true” is also “thinking like a
programmer”. Better would be

–  http://example.com/bugs?oslc.firstPage

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Most of the current web is read-only

Most content created “conventionally” and then published
– Blogs, tweets, wikis are exceptions
– APP is a protocol for blogs (?)
– Doing “authoring on the web” for a new domain requires learning

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Cool URLs last forever

Don’t assume you can “move” data
– Use virtual host names, not ones ties to machines

Don’t put any “meaning” into URLs
–  It will change

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Security

• Web authentication protocols are embryonic – e.g. OAuth
– Google – everything is public
– Enterprise search – typically everyone in enterprise can see

What is scope of “user”?
What is language for ACLs?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Miscellanea

Don’t write back-links (they will get out of synch)
Don’t assume closed schema

–  Ideally, let others add properties to existing types

Don’t assume what is at the other end of a “link”
Avoid “local resources”

– Users are global, not defined by an application (accounts can be local)
–  “Type descriptions” are global (defects, requirements, …)

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Does the application own storage?

Typical Application model:
– Data access is through an application, application controls integrity
– Storage is an application concern, totally private and fixed

Traditional IDE model:
– Data in files, multiple tools work on the files, files may be all screwed up
– Permanent Storage (e.g. SCM versioning) is a peer application - file

system is just a temporary shared cache between applications and
permanent storage

What is web equivalent of IDE model?

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Linked Data Challenges - detail

Think of “data policy that changes with time” not “inherent
characteristics”

•  E.g. Defects must have a priority between 1 and 3 – changeable policy.

Assume applications are “black boxes” – use protocols,
not frameworks to integrate (c.f. Eclipse)

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Fat client or resource-oriented UI?

You can write fat clients in the browser too
–  That is exactly what most experienced programmers will do

Fat clients have good support for specific workflows
Fat clients have problems

–  Long load times
–  Closed systems (what do you do when a link leads to pdf, or html or other?)
–  More difficult to evolve when workflows change

Another option is “page per resource” UIs
–  Embrace page switches

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Jazz: Open, extensible, web-centric, integration platform

Data

Open Lifecycle Services
ü  Universal addressing and access
ü  Language neutral
ü  Loose coupling
ü  Tools independent

Core Services

Discovery

Account and user admin

Query & Reporting

Licensing

Dashboards

Authentication

Common project

Foundation Services

REST API
Task Specific

Logic
Core
Logic

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

IBM Rational Software Delivery Platform

•  Enterprise
Modernization
and Transformation

•  Organizational
Governance

•  Skill Development and
Community

•  Implementation
Services

Manage
Evolving

Requirements

Manage
Architecture

Accelerate
Change

& Delivery
Improve
Project
Success

Deliver
Enduring
Quality

Deploy Process & Governance Best Practices

In-house
software

Outsource
vendors

Packaged
applications

Systems &
products

Solutions to help customers achieve greater value and
performance from their investments in delivering software

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Governance and Control of Software Delivery

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Executive Dashboards

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Something completely different

The future is uncertain – reason about probabilities
– Pierre de Fermat and Blaise Pascal, correspondence (1654)
– Christian Huygens (1657)
–  Jacob Bernoulli (1713)
– Abraham de Moivre (1718)
– Thomas Bayes (1763)
– Pierre-Simon Laplace (1774)

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

Financier – using probability distributions to evaluate
 project and portfolio value

No content below this line - No content below this line - No content below this line - No content below this line - No content below this line

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall
have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product
or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

