
CONTINUOUS DELIVERY:
THE DIRTY DETAILS

Mike Brittain
Etsy.com

@mikebrittain
mike@etsy.com

a.k.a. “Continuous Deployment”

www. .com

AUGUST 2012
1.4 Billion page views
USD $76 Million in transactions
3.8 Million items sold

http://www.etsy.com/blog/news/2012/etsy-statistics-august-2012-weather-report/

~170 Committers, everyone deploys

credit: martin_heigan (flickr)

Very end of 2009
Today

30

20

10

40

Continuous delivery is a pattern language in
growing use in software development to
improve the process of software delivery.
Techniques such as automated testing,
continuous integration, and continuous
deployment allow software to be developed to
a high standard and easily packaged and
deployed to test environments, resulting in the
ability to rapidly, reliably and repeatedly push
out enhancements and bug fixes to customers
at low risk and with minimal manual
overhead. The technique was one of the
assumptions of extreme programming but at
an enterprise level has developed into a
discipline of its own, with job descriptions for
roles such as "buildmaster" calling for CD
skills as mandatory. ~wikipedia

+ DevOps
+ Working on mainline, trunk, master
+ Feature flags
+ Branching in code

An Apology

We build primarily in PHP.
Please don’t run away!

An Apology

“Continuous Deployment
in Practice at Etsy”

The Dirty Details of...

2010-today2009
Then Now

Just before we
started using CD

15 mins6-14 hours
Then

1 person“Deployment Army”

Now

Rapid release
cycle

Highly orchestrated
and infrequent

Commonplace and
happens so often

we cannot keep up

Special event and
highly disruptive

Then Now

Blocked for
15 minutes,

next deploy will
only take

15 minutes

Config flags <5 mins

Blocked for
6-14 hours,

plus minimum of
6 hours to
redeploy

Then Now

Mainline,
minimal linking

and building,
rsync,
site up

Release branch,
database schemas,

data transforms,
packaging,

rolling restarts,
cache purging,

scheduled downtime

Then Now

Fast
Simple

Common

Slow
Complex
Special

Then Now

Deploying code is the very first thing
engineers learn to do at Etsy.

1st day
Add your photo to Etsy.com.

2nd day
Complete tax, insurance, and benefits forms.

1st day
Add your photo to Etsy.com.

WARNING

Continuous Deployment
Small, frequent changes.

Constantly integrating into production.
30 deploys per day.

“Wow... 30 deploys a day.
How do you build features so quickly?”

Software Deploy ≠ Product Launch

Deploys frequently gated by config flags
(“dark” releases)

$cfg[‘new_search’] = array('enabled' => 'off');
$cfg[‘sign_in’] = array('enabled' => 'on');
$cfg[‘checkout’] = array('enabled' => 'on');
$cfg[‘homepage’] = array('enabled' => 'on');

$cfg[‘new_search’] = array('enabled' => 'off');

$cfg[‘new_search’] = array('enabled' => 'off');

// Meanwhile...

old and boring search
$results = do_grep();

$cfg[‘new_search’] = array('enabled' => 'off');

// Meanwhile...

if ($cfg[‘new_search’] == ‘on’) {
 # New and fancy search
 $results = do_solr();
} else {
 # old and boring search
 $results = do_grep();
}

$cfg[‘new_search’] = array('enabled' => 'on');

// or...

$cfg[‘new_search’] = array('enabled' => 'staff');

// or...

$cfg[‘new_search’] = array('enabled' => '1%');

// or...

$cfg[‘new_search’] = array('enabled' => 'users',
 'user_list' => 'mike,john,kellan');

Validate in production, hidden from public.

Small incremental changes to the application
New classes, methods, controllers
Graphics, stylesheets, templates
Copy/content changes

Turning flags on/off, or ramping up

What’s in a deploy?

Security, bugs, traffic, load shedding,
adding/removing infrastructure.

Tweaking config flags or releasing patches.

Quickly Responding to issues

http://www.flickr.com/photos/flyforfun/2694158656/

http://www.flickr.com/photos/flyforfun/2694158656/

Operator
Config flags

Metrics

“How do you continuously deploy
database schema changes?”

Code deploys: ~ every 15-20 minutes
Schema changes: Thursday

Our web application is largely monolithic.

Etsy.com, support tools, developer API,
back-office, analytics

External “services” are not deployed
with the main application.

Databases, Search, Photo storage

For every config flag, there are two states
we can support — forward and backward.

Expose multiple versions in each service.
Expect multiple versions in the application.

Example: Changing a Database Schema

Prefer ADDs over ALTERs (“non-breaking expansions”)

Altering in-place requires coupling
code and schema changes.

Merging “users” and “users_prefs”

1. Write to both versions
2. Backfill historical data
3. Read from new version
4. Cut-off writes to old version

0. Add new version to schema
1. Write to both versions
2. Backfill historical data
3. Read from new version
4. Cut-off writes to old version

0. Add new version to schema
Schema change to add prefs columns to “users” table.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “off”
“read_prefs_from_users_table” => “off”

1. Write to both versions
Write code for writing prefs to the “users” table.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “off”

2. Backfill historical data
Offline process to sync existing data from “user_prefs”
to new columns in “users”

3. Read from new version
Data validation tests. Ensure consistency both internally
and in production.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “staff”

3. Read from new version
Data validation tests. Ensure consistency both internally
and in production.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “1%”

3. Read from new version
Data validation tests. Ensure consistency both internally
and in production.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “5%”

3. Read from new version
Data validation tests. Ensure consistency both internally
and in production.

“write_prefs_to_user_prefs_table” => “on”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “on”

(“on” == “100%”)

4. Cut-off writes to old version
After running on the new table for a significant amount
of time, we can cut off writes to the old table.

“write_prefs_to_user_prefs_table” => “off”
“write_prefs_to_users_table” => “on”
“read_prefs_from_users_table” => “on”

“Branch by Astraction”

Controller Controller

Users Model

“users” (old) “user_prefs” “users”

old schema new schema

(Abstraction)

http://paulhammant.com/blog/branch_by_abstraction.html
http://continuousdelivery.com/2011/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/

1. Write to both versions
2. Backfill historical data
3. Read from new version
4. Cut-off writes to old version

“The Migration 4-Step”

1. Write to both versions
2. Backfill historical data
3. Read from new version
4. Cut-off writes to old version
5. Clean up flags, code, columns (when?)

“The Migration 4-Step”

Architecture and Process

Deploying is cheap.

Some philosophies on product development...

Gathering data should be cheap, too.

staff, opt-in prototypes, 1%

Treat first iterations as experiments.

Get into code as quickly as possible.

Architecture largely doesn’t matter.

Kill things that don’t work.

“Terminate with extreme predjudice.”

Is the dumb solution enough to build a product?
How long will the dumb solution last?

Your assumptions will be wrong
once you’ve scaled 10x.

“We don’t optimize for being right. We optimize for
quickly detecting when we’re wrong.”

~Kellan Elliott-McCrea, CTO

Become really good at changing
your architecture.

Invest time in architecture by the
2nd or 3rd iteration.

Integration and Operations

Continuous Deployment
Small, frequent changes.

Constantly integrating into production.
30 deploys per day.

Code review before commit

Automated tests before deploy

Why Integrate with Production?

Dev ≠ Prod

Verify frequently and in small batches.

Integrating with production is a test in itself.
We do this frequently and in small batches.

"Production is truly the only place you
can validate your code."

"Production is truly the only place you
can validate your code."

~ Michael Nygard, about 40 min ago

More database servers in prod.
Bigger database hardware in prod.
More web servers.
Various replication schemes.
Different versions of server and OS software.
Schema changes applied at different times.
Physical hardware in prod.
More data in prod.
Legacy data (7 years of odd user states).
More traffic in prod.
Wait, I mean MUCH more traffic in prod.
Fewer elves.
Faster disks (SSDs) in prod.

Using a MySQL database to test an application that
will eventually be deployed on Oracle:

Using a MySQL database to test an application that
will eventually be deployed on Oracle: Priceless.

Verify frequently and in small batches.

Dev ≠ Prod

Dev ⇾ QA ⇾ Staging ⇾ Prod

Dev ⇾ QA ⇾ Staging ⇾ Prod

Dev ⇾ Pre-Prod ⇾ Prod

Test and integrate where you’ll see value.

Config flags (again)

off, on, staff, opt-in prototypes, user list, 0-100%

Config flags (again)

off, on, staff, opt-in prototypes, user list, 0-100%

“canary pools”

Automated tests after deploy

Real-time metrics and dashboards
Network & Servers, Application, Business

Release Managers: 0

Is it Broken?
Or , is it just better?

Metrics + Configs ⇾ OODA Loop

“Theoretical” vs. “Practical”

Surprise!!!
Turning off multi-
language support
improves our page
generation times by
up to 25%.

Homepage (95th perc.)

Nope. It’s really broken.

http://www.flickr.com/photos/flyforfun/2694158656/

Operator
Config flags

Metrics

Thursday, Nov 22 - Thanksgiving
Friday, Nov 23 - “Black Friday”

Monday, Nov 26 - “Cyber Monday”

~30 days out from Christmas

30

20

10

40

Thank you.

Mike Brittain

mike@etsy.com
@mikebrittain

