
Big
Big
Big
Big
Big

data developer



Pavlo Baron
pavlo.baron@codecentric.de

@pavlobaron



Disclaimer:

I will not flame-war,
rant, bash or do
anything similar around
concrete tools
here.

I'm almost tired
of doing that



Hey, dude.

I'm a big data
developer. We have
enormous data.

I continuously
read articles on
highscalability.com



Big data
is easy.

It's like normal
data, but, well,
even bigger.



Aha. So this
is not big, right?



That's big, huh?



Peta bytes of data every hour
on different continents, with
complex relations and with
the need to analyze them
in almost real time for anomalies
and to visualize them for
your management.

You can easily call this big data.



Everything below this you can 
call Mickey Mouse data



Good news is: you can
intentionally grow – collect
more data. And you should!



np, dude!

Data is data.

Same principles



Really?

Let's consider storage, ok?



np, dude!

Storage is just a
database



Really?

Storage capacity of one
single box, no matter how big
it is, is limited



np, dude!

You're talking
about SQL, right?

SQL is
boring grandpa
stuff and
doesn't scale



Oh.

When you expect big data, you
need to scale very far and thus
build on distribution and
combine theoretically
unlimited amount of machines to
one single distributed storage



There is no way around.

Except you invent the BlackHoleDB



np, dude!

NoSQL scales and is
cool.

They achieve this
through sharding,
ya know?

Sharding hides
this distribution
stuff



Hem.

Building upon distribution is
much harder than anything you've
seen or done before



Except you fed a crowd with
7 breads and walked upon the
water



np, dude!

From three of
CAP, I'll just
pick two.

As easy as this



Yeah, but...

The only thing that is absolutely
certain about distributed systems is
that parts of them will fail and you
will have no idea where and what
the hell is going on



So your P must be a given in a
distributed system. And you want to
play with C vs. A, not just take black
or white



np, dude!

Sharding works
seamlessly. I
don't need to take
care of anything



Seriously?

For example, one of the hardest
challenges with big data
is to distribute/shard parts over
several machines still having fast
traversals and reads, thus
keeping related data together.

Valid for graph and any other data
store, also NoSQL, kind of



Another hard challenge with
sharding is to avoid naive hashing.

Naive hashing would make you
depend on the number of nodes and
would not allow you to easily add or remove
nodes to/from the system



And still, the trade-off between data
locality, consistency, availability,
read/write/search speed, latency etc.
is hard



np, dude!

NoSQL would write
asynchronously
and do map/reduce
to find data



Of course.

You will love eventual
consistency, especially when you
need a transaction around a complex
money transfer



np, dude!

I don't have money
to transfer. But I
need to store lots
of data.

I can throw any
amount of it at
NoSQL, and it
will just work



Really?

So you'd just throw
something into your database
and hope it works?



What if you throw and
miss the target?



Data locality, redundancy,
consistent hashing and eventual
consistency combined with use
case driven storage design
are key principles in succeeding
with a huge distributed data storage.

That's big data development



How about data provisioning?



np, dude!

It's database
being the bottle
neck, not my
web servers



When you have thousands or millions
parallel requests per second, begging
for data, the first mile will (also)
quickly become the bottle neck.

Requests will get queued and
discarded as soon as your server
doesn't bring data fast enough
through the pipe



np, dude!

I'll get me some
bad-ass sexy
hardware



I bet you will.

But under high load, your hardware
will more or less quickly start
to crack



You'll burn your hard disks, boards
and cards. And wires. And you'll heat up to a
maximum



It's not about sexy hardware, but
about being able to quickly
replace it.

Ideally while the system keeps
running



But anyway.

To keep the first mile scalable and
fast, would lead to some expensive
network infrastructure.

You need to get the maximum out
of your servers in order to reduce
their number



np, dude!

I will use an event
driven C10K
problem solving
awesome web
server. Or I'll write
one on my own



Maybe.

But when your users are coming from
all over the world, it won't help you
much since the network latency from
them to your server will kill them



You would have to go for a CDN one
day, statically pre-computing content.

You would use their infrastructure
and reduce the number of hits on
your own servers to a minimum



np, dude!

I'll push my whole
platform out to the
cloud. It's even
more flexible and
scales like hell



Well...

You cannot reliably predict on which
physical machine and actually how
close to the data your program
will run.

Whenever virtual machines or
storage fragments get moved, your
world stops



You can easily force data locality and
shorter stop-the-world-phases
by paying higher bills



Data locality, geographic spatiality,
dedicated virtualization and content
pre-computability combined with use
case driven cloudification
are key principles in succeeding
with provisioning of huge
data amounts.

That's big data development



Let's talk about processing, ok?



np, dude!

All easily done
by a map/reduce
tool



Almost agreed.

map/reduce has two basic phases:
even “map” and “reduce”



The slowest of those two
is definitely “split”.

Moving data from one huge pile to
another before map/reduce is
damn expensive



np, dude!

I'll write my data
straight to the
storage of my
map/reduce tool.

It will then tear



It can.

But what if you need to search
during the map phase or even
afterwards – full-text, meta?



np, dude!

I'll use a cool
indexing search
engine or library.

It can find my data
in a snap



Would it?

A very hard challenge is to partition
the index and to couple its related
parts to the corresponding data.

With data locality of course, having
index pieces on the related machines.
It doesn’t help you much to find
data through index while nodes
holding it are unavailable



Data and index locality and direct
filling of data pots as data flies by
combined with use case driven
technology usage are key principles
in succeeding with processing of
huge data amounts.

That's big data development



So, how about analytics, dude?



np, dude!

It's classic use case
for map/reduce.

I can do this
afterwards and on
the fly



Are you sure?

So, you expect one tool to do both,
real-time and post fact analytics?



What did you smoke last night?



You don't want to believe
in map/reduce in (near) real-time,
don't you?



Realtime means REAL TIME, damn it!

It doesn’t mean “as fast as possible”
or “while you order a pizza”.

Time is time, and realtime is all
about doing something in fixed,
prescribed time or just DIAF



‘Cause distribution has got your soul



np, dude!

I'll get me some
rocket fast
hardware



I'm sure you will. But:

You cannot predict and fix the
map/reduce time.

You cannot ensure
the completeness of data.

You cannot
guarantee causality knowledge



If you need to predict better,
to be able to know about data/event
causality, to be fast you need to CEP
data streams as data flies by.

There is no (simple, fast) way around



But the most important thing is:

None of the BI tools you know will
adequately support your NoSQL
data store, so you're all alone
in the world of proprietary
immature tool combinations.

The world of pain.



np, dude!

My map/reduce
tool can even hide
math from me, so
I can concentrate
on doing stuff



There is no point in fearing
math/statistics/ML. You just need it



Separation of immediate and
post fact analytics and CEP of
data streams as data flies by combined
with use case driven technology
usage and statistical knowledge
are key principles in succeeding
with analytics of huge data amounts.

That's big data development



Oh, we forgot visualization



np, dude!

I just have no
idea about it



Me neither.

I just know that you can't visualize
huge data amounts using classic
spreadsheets. There are better ways,
tools, ideas to do this – find them

That's big data development



hem, dude...

You're a smart-ass.

Is it that you want
to say?



Almost.

In one of my humble moments
I would suggest you to do the following:



Stop thinking you gain adequately
deep knowledge through reading
half-baked blog posts. Get yourself
some of those:



Know and use full stack

H
ardw

are

O
S

N
etw

ork

Storage

D
ifferent platform

s

Tools, chains

D
ifferent languages

D
istribution

M
ath

A
lgorithm

s

D
ata stores

Statistics, V
isualization



Know your point of pain.

You must be Twitter, Facebook or
Google to have them all same time.

If you're none of them, you can have
one or two. Or even none.

Go for them with the right chain tool



First and the most important tool
in the chain is your brain



Thank you



Most images originate from
istockphoto.com

except few ones taken
from Wikipedia or Flickr (CC)

and product pages
or generated through public

online generators


