
Thoughts on PolyglotismStefan Tilkov | @stilkov | stefan.tilkov@innoq.com



7 Theses



1. Language Equality



Languages are Not Equal



Machine Code 
Assembler 

C 
C++ 
Java 
Scala

Python 
Ruby 

Scheme/Lisp
Haskell



Sapir-Whorf



“
Copyright 2008 innoQ Deutschland GmbH

Whorf, Benjamin (John Carroll, Editor) (1956). Language, Thought, 
and Reality: Selected Writings of Benjamin Lee Whorf. MIT Press. 

“Sapir-Whorf Hypothesis” (note: now disputed); 
see also http://en.wikipedia.org/wiki/Sapir-Whorf_hypothesis

We cut nature up, organize it into concepts, and
ascribe significances as we do, largely because
we are parties to an agreement to organize it in
this way — an agreement that holds throughout
our speech community and is codified in the
patterns of our language.



“Blub”



Blub

Features

Y

X
(Hopelessly limited)

(Full of unnecessary complexity)



“
Copyright 2008 innoQ Deutschland GmbH

Paul Graham, “Beating the Averages” 
http://www.paulgraham.com/avg.html 

Blub falls right in the middle of the abstractness continuum... As
long as our hypothetical Blub programmer is looking down the
power continuum, he knows he's looking down. Languages less
powerful than Blub are obviously less powerful, because they're
missing some feature he's used to. 
But when our hypothetical Blub programmer looks in the other
direction, up the power continuum, he doesn't realize he's
looking up. What he sees are merely weird languages... Blub is
good enough for him, because he thinks in Blub.



Verbosity

Type System

Ceremony

Speed

Learning
Curve

Paradigm

Stability

Differences



“
Copyright 2008 innoQ Deutschland GmbH

Steve Yegge
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-anouns.html

To be quite honest, most Javalanders are
blissfully unaware of the existence of the other
side of the world.



package com.example; 

import java.util.List; 
import java.util.Arrays; 
import java.util.Collections; 
import java.util.Comparator; 

public class SortList { 
   public static void main(String[] args) { 
       List<String> list = Arrays.asList("Shamelessly", "Stolen",
                                         "From", "Ola", "Bini"); 
        Collections.sort(list, new Comparator<String>() { 
           public int compare(String first, String second) { 
               return first.length() - second.length(); 
           } 
       }); 

       String sep = ""; 
       for (String name : list) { 
           System.out.print(sep); 
           System.out.print(name); 
           sep = ", "; 
       } 

       System.out.println(); 
   } 
}

A Little Bit of Java ...



list = ["Shamelessly", "Stolen", "From", "Ola",
"Bini"]

puts list.sort_by(&:length).join(', ')

… vs. Ruby

http://youtube.com/watch?v=PfnP-8XbJao



class Project < ActiveRecord::Base
   belongs_to :portfolio
   has_one :project_manager
   has_many :milestones
   has_and_belongs_to_many :categories
end



JavaScript/Node.js

var sys = require("sys"), http = require("http"), url = require("url"),
   path = require("path"),  fs = require("fs");

var dir = process.argv[2] || './public';
var port = parseFloat(process.argv[3]) || 8080;
sys.log('Serving files from ' + dir + ', port is ' + port);

http.createServer(function(request, response) {
   var uri = url.parse(request.url).pathname;
   var filename = path.join(process.cwd(), dir, uri);
   path.exists(filename, function(exists) {
       if(exists) {
           fs.readFile(filename, function(err, data) {
               response.writeHead(200);
               response.end(data);
           });
       } else {
           sys.log('File not found: ' + filename);
           response.writeHead(404);
           response.end();
       }
   });
}).listen(port);



(ns sample.grep
  "A simple complete Clojure program."
  (:use [clojure.contrib.io :only [read-lines]])
  (:gen-class))

(defn numbered-lines [lines] 
  (map vector (iterate inc 0) lines)) 

(defn grep-in-file [pattern file]
  {file (filter #(re-find pattern (second %)) (numbered-lines (read-lines
file)))})

(defn grep-in-files [pattern files]
  (apply merge (map #(grep-in-file pattern %) files)))

(defn print-matches [matches]
  (doseq [[fname submatches] matches, [line-no, match] submatches]
    (println (str fname ":" line-no ":" match))))
            
(defn -main [pattern & files]
  (if (or (nil? pattern) (empty? files))
    (println "Usage: grep <pattern> <file...>")
    (do 
      (println (format "grep started with pattern %s and file(s) %s"
                        pattern (apply str (interpose ", " files))))
      (print-matches (grep-in-files (re-pattern pattern) files))
      (println "Done."))))

Clojure



© 2012 innoQ Deutschland GmbH

There’s more to lifethan objects



© 2012 innoQ Deutschland GmbH

Data structures vs. objects

public class Point {
    private final double x;
    private final double y;

    public Point(double x, double y) {
        this.x = x;
        this.y = y;
    }
}

Point p1 = new Point(3, 4);

(def p1 [3 4])



© 2012 innoQ Deutschland GmbH

Data structures vs. objects

(def p1 [3 4])

Immutable
Reusable

Compatible



© 2012 innoQ Deutschland GmbH

Data structures vs. objects
import static java.lang.Math.sqrt;

public class Point {
    private final double x;
    private final double y;

    public Point(double x, double y) {
        this.x = x;
        this.y = y;
    }

    public double distanceTo(Point other) {
        double c1 = other.x - this.x;
        double c2 = other.y - this.y;
        return sqrt(c1 * c1 + c2 * c2);
    }
}



© 2012 innoQ Deutschland GmbH

Data structures vs. objects
(import-static java.lang.Math sqrt)

(defn distance
  [[x1 y1] [x2 y2]]
  (let [c1 (- x2 x1)
        c2 (- y2 y1)]
    (sqrt (+ (* c1 c1) (* c2 c2)))))



© 2012 innoQ Deutschland GmbH

Data structures vs. objects
(defn rand-seq [limit]
  (repeatedly #(rand-int limit)))

(take 10 (partition 2 (rand-seq 10)))

infinite randoms

pairs of random ints

10 random points

;((3 6) (6 1) (8 5) (0 7) (3 8) (0 6) (1 6) (7 6) (0 1) (8 9))



© 2012 innoQ Deutschland GmbH

Data structures vs. objects
(defn circumference 
  [vertices]
  (reduce + (map distance vertices (drop 1 (cycle vertices)))))

infinite repetition

seq without firstall

;((3 6) (6 1) (8 5) (0 7) (3 8) (0 6) (1 6) (7 6) (0 1) (8 9))
;((6 1) (8 5) (0 7) (3 8) (0 6) (1 6) (7 6) (0 1) (8 9) (3 6))

;58.06411369758525

......



© 2012 innoQ Deutschland GmbH

assoc
assoc-in
butlast
concat
conj
cons
count
cycle
difference
dissoc
distinct
distinct?
drop-last
empty
empty?
every?
filter
first
flatten
group-by

interleave
interpose
intersection
into
join
lazy-cat
mapcat
merge
merge-with
not-any?
not-empty?
not-every?
nth
partition
partition-all
partition-by
peek
pop
popy

project
remove
replace
rest
rseq
select
select-keys
shuffle
some
split-at
split-with
subvec
take
take-last
take-nth
take-while
union
update-in



© 2012 innoQ Deutschland GmbH

Maps

(def projects #{{:id "1",
                 :kind :time-material,
                 :description "Consulting for BigCo",
                 :budget 25000,
                 :team [:joe, :chuck, :james]}
                {:id "2",
                 :kind :fixed-price,
                 :description "Development for Startup",
                 :budget 100000,
                 :team [:john, :chuck, :james, :bill]}
                {:id "3",
                 :kind :fixed-price,
                 :description "Clojure Training",
                 :budget 3000,
                 :team [:joe, :john]}})



© 2012 innoQ Deutschland GmbH

Map access
(defn all-members
  [projects]
  (reduce conj #{} (flatten (map :team
projects))))

seq of vectors

seq of members with duplicates

set of all team members

;#{:chuck :joe :james :john
:bill}

(all-members projects)



© 2012 innoQ Deutschland GmbH

Map access & coupling
(defn all-members
  [projects]
  (reduce conj #{} (flatten (map :team
projects))))

#{{:id "2",
   :kind :fixed-price,
   :description "Development for Startup",
   :budget 100000,
   :team [:john, :chuck, :james, :bill]}}



© 2012 innoQ Deutschland GmbH

Map access & coupling
(defn all-members
  [projects]
  (reduce conj #{} (flatten (map :team
projects))))

#{{:id "2",
   :kind :fixed-price,
   :description "Development for Startup",
   :budget 100000,
   :team [:john, :chuck, :james, :bill]}}

:team

:team



© 2012 innoQ Deutschland GmbH

[{:kind "fixed-price",
  :team ["john" "chuck" "james" "bill"],
  :budget 100000,
  :id "2",
  :description "Development for Startup"}
{:kind "fixed-price",
  :team ["joe" "john"],
  :budget 3000,
  :id "3",
  :description "Clojure Training"}
{:kind "time-material",
  :team ["joe" "chuck" "james"],
  :budget 25000,
  :id "1",
  :description "Consulting for BigCo"}]

[{"kind":"fixed-price",
  "team":["john", "chuck", "james", "bill"],
  "budget":100000,
  "id":"2",
  "description":"Development for Startup"},
{"kind":"fixed-price",
  "team":["joe", "john"],
  "budget":3000,
  "id":"3",
  "description":"Clojure Training"},
{"kind":"time-material",
  "team":["joe", "chuck", "james"],
  "budget":25000,
  "id":"1",
  "description":"Consulting for BigCo"}]

(json-str)

(read-json)



Design
Patterns are a
Design Smell





“
Copyright 2008 innoQ Deutschland GmbH

Mark Dominus, “Design Patterns of 1972”,
http://blog.plover.com/2006/09/11/

Patterns are signs of weakness in programming
languages.



Patterns & Dynamic Languages

First-class types
AbstractFactory, Flyweight,

FactoryMethod, State, Proxy,
Chain-of-Responsibility

First-class functions
Command, Strategy,

TemplateMethod, Visitor

Macros Interpreter, Iterator

Method Combination Mediator, Observer

Multimethods Builder, (Visitor)

Modules Facade

http://norvig.com/design-patterns/



Project Example 1

Case tool model export/import
XMI -> transformation -> Java API

Use of a Java Lisp dialect (SISC)
XML libraries from Java

:-)



Yet ...



... languages don’t matter



HTTP 
URIs

HTML
CSS

Clients
Web Servers

Caching Proxies
CDN

Atom/RSS
Databases



1. Language Equality

Languages differ drastically



2. Ecosystems



Development Environment



Libraries



Runtime Environment



Community



Culture



Project Example 2

Large scale banking application
Java / J2EE

Numerous external DSLs, implemented in Haskell
Exchange of binary data w/ Java

Excel/sed/awk/Haskell/Java pipeline
:-(



2. Ecosystems

No language is an island



3. Multi-language Platforms



JVM.NET



JVM.NET

C#
VB
F#
IronPython
IronRuby

DLR

Java
JRuby
Scala
Groovy
Clojure

Java 7



Development
Environment

Libraries

Runtime
Environment

Culture

Community



Development
Environment

Libraries

Runtime
Environment

Culture

Community



Project Example 2

Environmental information system
JRuby/Rails

Use of Java graphics libraries
:-)



3. Multi-language platforms

MLVMs enable diversity



4. Polyglot Programming



Polyglot Programmingvs.Polyglot Programmer



polyglot (noun): a person whoknows and is able to useseveral languages



Question: What language do you use?



Question: What languages do you use?



SQL

JavaScript

XML BPEL

Ant
HTML

CSS

sh
cmd

EL

XSLT



The right tool …



mon·o·cul·ture  |ˈmän#ˌk#lCH#r|
n.
1. The cultivation of a single crop on a
farm or in a region or country.
2. A single, homogeneous culture
without diversity or dissension.





Runtime

Language

Frameworks

& Libraries

Business Logic

Runtime

Language

Frameworks

& Libraries

Business Logic

Runtime

Language

Frameworks

& Libraries

Business Logic



Example Criteria

Java Mainstream

Erlang Distributed systems,
24x7

Clojure Complex algorithms,
concurrency

Ruby Productivity



4. Polyglot programming

Nobody uses a single language
…

… nor should they.



5. Stability Layers



Engine

Core Domain

Application

“hard”

“soft”



Engine

Core Domain

Application

Java

JVM

Java +
XML

“hard”

“soft”



Engine

Core Domain

Application

Java

JVM

Java/DSL

“hard”

“soft”



Engine

Core Domain

Application

Java

JVM/JRuby

JRuby

“hard”

“soft”



“
Copyright 2008 innoQ Deutschland GmbH

Philip Greenspun's Tenth Rule of Programming 
http://philip.greenspun.com/research/

Any sufficiently complicated C or Fortran
program contains an ad-hoc, informally-
specified, bug-ridden, slow implementation 
of half of CommonLisp.



What do you know that thedevelopers of{Ruby|Clojure|Groovy|…} don’t?



5. Stability layers

Soft and hard spots suggest
different languages



6. Distributed Systems





JRuby C#

Scala Groovy
Java Clojure



Modularization

Application Size Modularization

1-50 LOC 1 file

50-500 LOC few files, many functions

500-1000 LOC library, class hierarchy

1000-2000 LOC framework + application

>2000 LOC more than one application



Necessary Rules & Guidelines

Cross-system System-internal

Responsibilities Programming languages

UI integration Development tools

Communication protocols Frameworks

Data formats Process/Workflow control

Redundant data Persistence

BI interfaces Design patterns

Logging, Monitoring Coding guidelines

(Deployment, Operations)



Project Example 4

Web-based secure email service
Java/Spring/JAX-RS RESTful HTTPservices

JRuby/Rails frontend
Puppet/Ruby for automation
Numerous components in C

:-)



6. Distributed Systems

Modern distribution
architecture creates freedom



7. People



Skills



Community



Prejudice



Dependencies



Frustration



Motivation



7. People

As usual, people matter most



Languages differ drastically
No language is an island 
MLVMs enable diversity 
Nobody uses a single language 
Soft and hard spots suggest different

languages 
Modern distribution architecture creates

freedom
As usual, people matter most

1.
2.
3.
4.
5.

6.

7.



Q&AStefan Tilkov, @stilkovstefan.tilkov@innoq.comhttp://www.innoq.comPhone: +49 170 471 2625

© 2011 innoQ Deutschland GmbH

We will take care of it - personally.


