gOtO

conference
........ =aar hug

BUILDING DISTRIBUTED SYSTEMS
WITH RIAK CORE

Steve Vinoski
Basho Technologies

http://basho.com/
Cambridge, MA USA >
@stevevinoski) ﬁ
vinoski@ieee.org P
http://steve. lhﬁ)ski;;net/ (R
INTERNATIONAL pANY. e .E ,:
SOFTWARE DEVELOPMENT ey r&\ e ﬂ
T oo o R T——
CONFERENCE — —— s HE gotqconf-com ’j

Tuesday, October 2, 12

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

basho

20 Years Ago:
Client-Server

r

-

~N

Client

Client

Client

Client

Serve r

=

Early-ish Web A
web web web web web web web web
server | | server| |server server | |server| |server server | | server
app app app
server server server

Database

=
basho 3

Tuesday, October 2, 12

Scaling Up

@ Scaling up meant getting bigger
boxes

® Worked for client/server and early
web apps

@ But couldn’t keep up with web growth

basho 4

Scaling Out

® As businesses went from “having”
websites to “being” websites:

@ increasing number of commodity
boxes

@ eventually across multiple data
centers

©
basho 5

Tuesday, October 2, 12

Scaling Out
Changed Everything

® More concurrency, more distribution,
more replication, more latency, more
consistency issues

® And more operational issues
® As well as more system failures

® While also needing higher reliability
and uptime

0O

basho 6

Tuesday, October 2, 12

CAP Theorem

® A conjecture put forth in 2000 by Dr. Eric
Brewer

@ Formally proven in 2002

@ A distributed system can never completely
guarantee these three properties:

@ Consistency

e Availability

@ Partition tolerance
©
basho 7

Tuesday, October 2, 12

Partition lTolerance

® Guarantees continued system
operation even when the network
breaks and messages are lost

® When—not if—a partition occurs,
choose between C and A

©
basho 8

Tuesday, October 2, 12

Consistency

® Distributed nodes see the same
updates at the same logical time

@ Hard to guarantee across a
distributed system

® Any replication introduces
consistency vs. latency issues

©
basho 9

Tuesday, October 2, 12

Availability

® Guarantees the system will service
every read and write sent to it

® Even when things are breaking

©
basho 10

Tuesday, October 2, 12

Choosing AP

® Provides read/write availability even
when network breaks or nodes die

® Provides eventual consistency

® Example: Domain Name System (DNS)
IS an AP system

basho ¥

Example AP Systems

® Amazon Dynamo
e Cassandra

e CouchDB

® Voldemort

® Basho Riak

basho 12

PACELC

©
basho 13

Tuesday, October 2, 12

PACELC

@ Work by Daniel Abadi of Yale
University to augment CAP

basho

PACELC

@ Work by Daniel Abadi of Yale
University to augment CAP

® When Partitioned, trade off
Availability and Consistency

basho 3

basho

PACELC

@ Work by Daniel Abadi of Yale
University to augment CAP

® When Partitioned, trade off
Availability and Consistency

® Else

13

PACELC

@ Work by Daniel Abadi of Yale
University to augment CAP

® When Partitioned, trade off
Availability and Consistency

® Else

@ Trade off Latency and Consistency

basho 13

Handling Tradeoffs for
AP Systems

Assumptions

® We want to scale out

® We have a networked cluster of
nodes, each with local storage

® We're choosing availability over
consistency when partitions occur

©
basho 5

Tuesday, October 2, 12

® Problem: how to make the system available
even if nodes die or the network breaks!?

® Solution:

® allow reading and writing from multiple
nodes in the system

® avoid master nodes, instead make all nodes
peers

©
basho 16

Tuesday, October 2, 12

® Problem: if multiple nodes are involved, how
do you reliably know where to read or write?

® Solution:

® assign virtual nodes (vnodes) to physical
nodes

® use consistent hashing to find vnodes for
reads/writes

©
basho 17

Tuesday, October 2, 12

Node vs.Vhode

@ Vnode: Erlang process managing a ring
partition

® Node: physical machine that hosts vnodes

® Vnodes / node = (ring size) / (node count)

0O

basho 8

Consistent Hashing

2 160

« 0
) \ e single vnode/partition

node 0

a ring with 32 partitions \"—2|60/4
\ PSS hode 2
/ node 3
\

\ / hash(<<"artist">>,<<"REM">>)
)

p) 160 /2
b—
basho 19

Tuesday, October 2, 12

Consistent Hashing and
Multiple Vnode Benefits

@ Data is stored in multiple locations

@ Loss of a node means only a single
replica is lost

® No master to lose

® Adding nodes is trivial, data gets
rebalanced minimally and
automatically

0

basho 20

® Problem: what about availability? What if the
node you write to dies or becomes
inaccessible!?

® Solution: sloppy quorums (as opposed to
strict quorumes)

® write to multiple vnodes

® attempt reads from multiple vnodes

©
basho 21

Tuesday, October 2, 12

N/R/WV Values

® N = number of replicas to store (on
distinct nodes)

® R = read quorum = number of replica
responses needed for a successful
read (specified per-request)

® W = write quorum = number of replica
responses needed for a successful
write (specified per-request)
©
basho 22

Tuesday, October 2, 12

N/R/WV Values

put(<<"artist">>,<<"REM">>)

® Problem: what happens if a key hashes to
vhodes that aren’t available?

® Solution:

® read from or write to the next available
vnode (hence “sloppy” not “strict”
quorums)

® eventually repair via hinted handoff

©
basho 24

Tuesday, October 2, 12

N/R/WV Values

get/put(artist”, "REM’,
R/W=2)

K*{ok, Object}

Hinted Handoff

@ Fallback vhode holds data for
unavailable actual vhode

e Fallback vnode keeps checking for
availability of actual vhode

® Once actual vnode becomes available,
fallback hands off data to it

basho 26

Quorum Benefits

® Allows applications to tune
consistency, availability, reliability per
read or write

basho 27

® Problem: how do the nodes in the ring keep
track of ring state?

® Solution: gossip protocol

©
basho 28

Tuesday, October 2, 12

Gossip Protocol

® Nodes “gossip” their view of the state
of the ring to other nodes

@ If a node changes its claim on the
ring, it lets others know

® The overall state of the ring is kept
consistent among all nodes in the
ring without needing a master

©
basho 29

Tuesday, October 2, 12

® Problem: what happens if vnode replicas get
out of sync!

® Solution:
® vector clocks
® read repair
'

basho 30

Tuesday, October 2, 12

® Problem: what happens if vnode replicas get
out of sync!

® Solution:

® vector clocks

©
basho 31

Tuesday, October 2, 12

Vector Clocks

® Reasoning about time and causality in
distributed systems is hard

® Integer timestamps don’t necessarily
capture causality

® Vector clocks provide a happens-
before relationship between two
events

©
basho 32

Tuesday, October 2, 12

Vector Clocks

® Simple data structure:
[{ActorID,Counter}]

® All data has an associated vector
clock, actors update their entry when
making changes

® ClockA happened-before ClockB if all
actor-counters in A are less than or
equal to those in B

0

basho 33

Tuesday, October 2, 12

Vector Clocks are Easy

® Bryan Fink’s blog post: http://
basho.com/blog/technical/
2010/01/29/why-vector-clocks-are-

easy/

® Explains vector clocks using a dinner
invitation example

basho 34

http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/

Dinner Example

@ Alice, Ben, Cathy, Dave exchange
some email to decide when to meet
for dinner

® Alice emails everyone to suggest
Wednesday

basho 35

Dinner Example

® Ben and Dave email each other and
decide Tuesday

@ Cathy and Dave email each other and
Cathy prefers Thursday, and Dave
changes his mind and agrees

basho 36

Dinner Example

@ Alice then pings everyone to check
that Wednesday is still OK

® Ben says he and Dave prefer Tuesday

@ Cathy says she and Dave prefer
Thursday

® Dave doesn’t answer

basho 37

Dinner Example

@ Alice then pings everyone to check
that Wednesday is still OK

® Ben says he andﬁ} r'Tuesday
e Cathy ave prefer
Thursﬁﬁﬂ

® Dave doesn’t answer

basho 37

©
basho

Tuesday, October 2, 12

| [Alice,1}]

. Wednesday |

38

" [Alice,1}]
. Wednesday |

Ben Dave

Cathy

©
basho 38

Tuesday, October 2, 12

Ben < > Dave

b—
basho 39

Tuesday, October 2, 12

Ben < > Dave

b—
basho 39

Tuesday, October 2, 12

[{Alice, 1},{Ben, 1},{Dave, 1}]
Tuesday

& J

Ben < > Dave

©
basho 39

Tuesday, October 2, 12

Dave

Cathy

basho 40

Tuesday, October 2, 12

Dave

Cathy

basho 40

Tuesday, October 2, 12

[{Alice, 1},{Ben, 1},{Dave, 1}]
Tuesday

& J

Dave

o /

[{Alice, 1},{Cathy, 1}]
Thursday

_

basho 40

Tuesday, October 2, 12

i [{Alice, |},{Ben, |},{Cathy, | },{Dave,2}] \
Thursday

| J

Dave

o /

[{Alice, 1},{Cathy, 1}]
Thursday

_

basho 41

Tuesday, October 2, 12

i [{Alice, |},{Ben, |},{Cathy, | },{Dave,2}] \
Thursday

| J

Dave

o /

basho 41

Tuesday, October 2, 12

" [Alice,1}]
. Wednesday |

Ben Dave

Cathy

©
basho 42

Tuesday, October 2, 12

| [Alice,1}]

. Wednesday

/

&

[{Alice, 1},{Ben, 1},{Dave, 1}]

Tuesday

J

basho

Tuesday, October 2, 12

Ben

Cathy

42

Dave

| [Alice,1}]

. Wednesday

/

&

[{Alice, 1},{Ben, 1},{Dave, 1}]

Tuesday

J

basho

Tuesday, October 2, 12

Ben

v

Cathy

Dave

&

i [{Alice, |},{Ben, |},{Cathy, | },{Dave,2}] \

Thursday

J

42

| [Alice,1}]

. Wednesday

/

&

[{Alice, 1},{Ben, 1},{Dave, 1}]

Tuesday

J

basho

Tuesday, October 2, 12

Ben

v

Cathy

&

Thursday

i [{Alice, |},{Ben, |},{Cathy, | },{Dave,2}] \

J

42

" [{Alice, 1},{Ben, 1},{Cathy, 1},{Dave,2}]
Thursday

- J

basho 43

Tuesday, October 2, 12

" [{Alice, 1},{Ben, 1},{Cathy, 1},{Dave,2}]
Thursday

- J

See: Easy!

basho 43

Tuesday, October 2, 12

Vector Clocks are Hard

@ Justin Sheehy’s blog post: http://
basho.com/blog/technical/
2010/04/05/why-vector-clocks-are-

hard/

basho 44

http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/

Vector Clocks are Hard

® Our example shows how vclocks can
quickly grow

@ Tradeoffs to keep them bounded:
® mark each entry with a timestamp
@ occasionally drop old entries
® also trim vclock if too many entries

0

basho 45

Tuesday, October 2, 12

® Problem: what happens if vnode replicas get
out of sync!

® Solution:

® read repair

©
basho 46

Tuesday, October 2, 12

Read Repair

@ If a read detects that a vnode has
stale data, it is repaired via
asynchronous update

® Helps implement eventual consistency

©
basho 47

Tuesday, October 2, 12

basho

This is Riak Core

@ consistent ® gossip protocols

hashing |
@ virtual nodes
@ vector clocks (vnodes)

@ sloppy quorums @ hinted handoff

48

Riak Core
Implementation

® Open source

@ https://agithub.com/basho/riak_core

@ Implemented in Erlang

@ Helps you build AP systems

basho 49

https://github.com/basho/riak_core
https://github.com/basho/riak_core

Questions!

basho

