
BUILDING DISTRIBUTED SYSTEMS
WITH RIAK CORE

Steve Vinoski
Basho Technologies
http://basho.com/

Cambridge, MA USA
@stevevinoski

vinoski@ieee.org
http://steve.vinoski.net/

Tuesday, October 2, 12

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

20 Years Ago:
Client-Server

ClientClientClientClient

Server

2

Tuesday, October 2, 12

Early-ish Web Apps

Database

app
server

app
server

app
server

web
server

web
server

web
server

web
server

web
server

web
server

web
server

web
server

3

Tuesday, October 2, 12

Scaling Up

•Scaling up meant getting bigger
boxes

•Worked for client/server and early
web apps

•But couldn’t keep up with web growth

4

Tuesday, October 2, 12

Scaling Out

•As businesses went from “having”
websites to “being” websites:

• increasing number of commodity
boxes

•eventually across multiple data
centers

5

Tuesday, October 2, 12

Scaling Out
Changed Everything

•More concurrency, more distribution,
more replication, more latency, more
consistency issues

•And more operational issues

•As well as more system failures

•While also needing higher reliability
and uptime

6

Tuesday, October 2, 12

CAP Theorem

• A conjecture put forth in 2000 by Dr. Eric
Brewer

• Formally proven in 2002

• A distributed system can never completely
guarantee these three properties:

• Consistency

• Availability

• Partition tolerance

7

Tuesday, October 2, 12

Partition Tolerance

•Guarantees continued system
operation even when the network
breaks and messages are lost

•When—not if—a partition occurs,
choose between C and A

8

Tuesday, October 2, 12

Consistency

•Distributed nodes see the same
updates at the same logical time

•Hard to guarantee across a
distributed system

•Any replication introduces
consistency vs. latency issues

9

Tuesday, October 2, 12

Availability

•Guarantees the system will service
every read and write sent to it

•Even when things are breaking

10

Tuesday, October 2, 12

Choosing AP

•Provides read/write availability even
when network breaks or nodes die

•Provides eventual consistency

•Example: Domain Name System (DNS)
is an AP system

11

Tuesday, October 2, 12

Example AP Systems

•Amazon Dynamo

•Cassandra

•CouchDB

•Voldemort

•Basho Riak

12

Tuesday, October 2, 12

PACELC

13

Tuesday, October 2, 12

PACELC

•Work by Daniel Abadi of Yale
University to augment CAP

13

Tuesday, October 2, 12

PACELC

•Work by Daniel Abadi of Yale
University to augment CAP

•When Partitioned, trade off
Availability and Consistency

13

Tuesday, October 2, 12

PACELC

•Work by Daniel Abadi of Yale
University to augment CAP

•When Partitioned, trade off
Availability and Consistency

•Else

13

Tuesday, October 2, 12

PACELC

•Work by Daniel Abadi of Yale
University to augment CAP

•When Partitioned, trade off
Availability and Consistency

•Else

•Trade off Latency and Consistency

13

Tuesday, October 2, 12

Handling Tradeoffs for
AP Systems

14

Tuesday, October 2, 12

Assumptions

•We want to scale out

•We have a networked cluster of
nodes, each with local storage

•We’re choosing availability over
consistency when partitions occur

15

Tuesday, October 2, 12

• Problem: how to make the system available
even if nodes die or the network breaks?

• Solution:

• allow reading and writing from multiple
nodes in the system

• avoid master nodes, instead make all nodes
peers

16

Tuesday, October 2, 12

• Problem: if multiple nodes are involved, how
do you reliably know where to read or write?

• Solution:

• assign virtual nodes (vnodes) to physical
nodes

• use consistent hashing to find vnodes for
reads/writes

17

Tuesday, October 2, 12

•Vnode: Erlang process managing a ring
partition

•Node: physical machine that hosts vnodes

•Vnodes / node = (ring size) / (node count)

18

Node vs. Vnode

Tuesday, October 2, 12

Consistent Hashing

19

Tuesday, October 2, 12

Consistent Hashing and
Multiple Vnode Benefits
•Data is stored in multiple locations

•Loss of a node means only a single
replica is lost

•No master to lose

•Adding nodes is trivial, data gets
rebalanced minimally and
automatically

20

Tuesday, October 2, 12

• Problem: what about availability? What if the
node you write to dies or becomes
inaccessible?

• Solution: sloppy quorums (as opposed to
strict quorums)

• write to multiple vnodes

• attempt reads from multiple vnodes

21

Tuesday, October 2, 12

N/R/W Values

•N = number of replicas to store (on
distinct nodes)

•R = read quorum = number of replica
responses needed for a successful
read (specified per-request)

•W = write quorum = number of replica
responses needed for a successful
write (specified per-request)

22

Tuesday, October 2, 12

N/R/W Values

23

Tuesday, October 2, 12

• Problem: what happens if a key hashes to
vnodes that aren’t available?

• Solution:

• read from or write to the next available
vnode (hence “sloppy” not “strict”
quorums)

• eventually repair via hinted handoff

24

Tuesday, October 2, 12

N/R/W Values

25

Tuesday, October 2, 12

Hinted Handoff

•Fallback vnode holds data for
unavailable actual vnode

•Fallback vnode keeps checking for
availability of actual vnode

•Once actual vnode becomes available,
fallback hands off data to it

26

Tuesday, October 2, 12

Quorum Benefits

•Allows applications to tune
consistency, availability, reliability per
read or write

27

Tuesday, October 2, 12

• Problem: how do the nodes in the ring keep
track of ring state?

• Solution: gossip protocol

28

Tuesday, October 2, 12

•Nodes “gossip” their view of the state
of the ring to other nodes

• If a node changes its claim on the
ring, it lets others know

•The overall state of the ring is kept
consistent among all nodes in the
ring without needing a master

Gossip Protocol

29

Tuesday, October 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

30

Tuesday, October 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

31

Tuesday, October 2, 12

Vector Clocks

•Reasoning about time and causality in
distributed systems is hard

• Integer timestamps don’t necessarily
capture causality

•Vector clocks provide a happens-
before relationship between two
events

32

Tuesday, October 2, 12

Vector Clocks

•Simple data structure:
[{ActorID,Counter}]

•All data has an associated vector
clock, actors update their entry when
making changes

•ClockA happened-before ClockB if all
actor-counters in A are less than or
equal to those in B

33

Tuesday, October 2, 12

Vector Clocks are Easy

•Bryan Fink’s blog post: http://
basho.com/blog/technical/
2010/01/29/why-vector-clocks-are-
easy/

•Explains vector clocks using a dinner
invitation example

34

Tuesday, October 2, 12

http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/

Dinner Example

•Alice, Ben, Cathy, Dave exchange
some email to decide when to meet
for dinner

•Alice emails everyone to suggest
Wednesday

35

Tuesday, October 2, 12

Dinner Example

•Ben and Dave email each other and
decide Tuesday

•Cathy and Dave email each other and
Cathy prefers Thursday, and Dave
changes his mind and agrees

36

Tuesday, October 2, 12

Dinner Example

•Alice then pings everyone to check
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer
Thursday

•Dave doesn’t answer

37

Tuesday, October 2, 12

Dinner Example

•Alice then pings everyone to check
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer
Thursday

•Dave doesn’t answer
Conf

lict!

37

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

38

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

38

Tuesday, October 2, 12

Ben Dave

39

Tuesday, October 2, 12

Ben Dave

[{Alice,1},{Ben,1}]
Tuesday

39

Tuesday, October 2, 12

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

Ben Dave

39

Tuesday, October 2, 12

Cathy

Dave

40

Tuesday, October 2, 12

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

40

Tuesday, October 2, 12

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

40

Tuesday, October 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

41

Tuesday, October 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

Cathy

Dave

41

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

42

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

42

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

42

Tuesday, October 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

42

Tuesday, October 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

43

Tuesday, October 2, 12

See: Easy!

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

43

Tuesday, October 2, 12

Vector Clocks are Hard

•Justin Sheehy’s blog post: http://
basho.com/blog/technical/
2010/04/05/why-vector-clocks-are-
hard/

44

Tuesday, October 2, 12

http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/

Vector Clocks are Hard

•Our example shows how vclocks can
quickly grow

•Tradeoffs to keep them bounded:

•mark each entry with a timestamp

•occasionally drop old entries

•also trim vclock if too many entries

45

Tuesday, October 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

46

Tuesday, October 2, 12

Read Repair

•If a read detects that a vnode has
stale data, it is repaired via
asynchronous update

•Helps implement eventual consistency

47

Tuesday, October 2, 12

This is Riak Core

•consistent
hashing

•vector clocks

•sloppy quorums

•gossip protocols

•virtual nodes
(vnodes)

•hinted handoff

48

Tuesday, October 2, 12

Riak Core
Implementation

•Open source

•https://github.com/basho/riak_core

• Implemented in Erlang

•Helps you build AP systems

49

Tuesday, October 2, 12

https://github.com/basho/riak_core
https://github.com/basho/riak_core

Questions?

50

Tuesday, October 2, 12

