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I will do a few simplifications in order to get the main points across.
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Warning 2: Serious Love Ahead
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I love Erlang!
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It was part of a major career shift and I have never looked back.
Apologies if I get too intense.
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Realities Of Software Development

•Time-to-market pressure

•Utilisation of computing resources

•Scaling successes

•Maintenance burden
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3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!
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3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!
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Small semantic gap

General vs Domain Specific
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Erlang’s Sweet Spot
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GUI

Drivers

Middleware
Coordination

Control

Erlang
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Erlang was intended to deal with the control plane in telecom, which is all about orchestration 
of what goes on.
GUI and low-level things are not what Erlang was created for - hence Erlang has good 
support for integration with other languages.
Read the wonderful doctor thesis by Bjarne Däcker if you want to learn more: http://
www.erlang.se/publications/bjarnelic.pdf
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Other Erlang Domains
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•Messaging - XMPP et al

- ejabberd, MongooseIM

•Webservers

- Yaws, Chicago Boss

•Payment switches & soft switches 

- Vocalink, OpenFlow/LINC

•Distributed Databases

- Riak, CouchDB, Scalaris 
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If the tool fits,
you must select!

Tech Mesh Conference
4-5 December

London
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Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast 
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.
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Dealing With Failures
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die together
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of death
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The ability to link processes and monitor them is the key to adopting fail-fast fully.
Link & monitor works across machines!
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Supervision Trees
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worker

supervisor

workersupervisor

worker workerworker
The OTP library is 

built on this principle

13Wednesday, 3 October 2012 W

Robust systems does not happen by accident - even in Erlang!
You have to think about the consequences of a worker process that fails and let the 
supervisor take appropriate actions.
Using the OTP library’s components makes it straightforward to implement the supervision 
tree, which has the added benefit that all things are started in the right order.
OTP is lightweight enough to allow fast prototyping and the prototype can evolve into a high 
quality solution in a gradual way.
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Core

Scheduler

Processes

Core

Scheduler

Processes
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There is 1 scheduler per core.
The VM tries to load balance across the available cores.
Scales extremely well with the addition of extra cores - WITHOUT changing the programs!
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Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide 
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You 
can decompose the PID to figure out if it is a local process, but you do not need to do so - 
locality is transparent.
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As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.
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With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should 
be updated before continuing.
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With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should 
be updated before continuing.
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How Will I Know If It Really Scales?
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???

Cores/Machines

Performance
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A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html
A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.
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Percept2 To The Rescue
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Active functions
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Percept: Erlang Concurrency Profiling Tool, utilizes trace informations and profiler events to 
form a picture of the processes's and ports runnability.
Percept2 is an extension of Percept (part of the OTP release).
Extensions: # of schedulers active, active functions, process migration, message passing 
stats, inter-node communication
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One central memory allocator for all schedulers on the same machine
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One central memory allocator for all schedulers on the same machien
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Coming in R16!
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Fully Connected
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Erlang connects all nodes fully. 
So you get a lot of connections.
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Scaling Over Machines
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A fully connected system might not be right for every problem.
s_groups allows you to create clusters of nodes.
Nodes inside a cluster are fully connected. 
Connections between clusters can be arbitrary.
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Managing Erlang Systems
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Basic Erlang has the ability to go in and monitor what is going on in any node you can attach 
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!
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Basic Erlang has the ability to go in and monitor what is going on in any node you can attach 
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!
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Managing Big Systems
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CCL
/sɪˈsɪlɪ/
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Erlang Solutions are building a tool as part of the RELEASE project to manage and operate big 
Erlang systems.
CCL = Cloud Computing Lace or Cloud Cuckoo Land depending on your mood.
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Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

•No direct support for

- matrix multiplication

- ray tracing

- coarse grained parallel problems
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We are taking the good things from what has been learnt in the Haskell & Data-flow language 
communities and building a DSL which helps us leverage these types of parallel optimisations"
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running_avg
  where 
     sum = first(input) fby sum + next(input);
     n = 1 fby n + 1;
     running_avg = sum / n;
  end;
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running_avg
  where 
     sum = first(input) fby sum + next(input);
     n = 1 fby n + 1;
     running_avg = sum / n;
  end;

Black magic
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We are taking the good things from what has been learnt in the Haskell & Data-flow language 
communities and building a DSL which helps us leverage these types of parallel optimisations"
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