
ERLANG EVOLVES
FOR MULTI-CORE AND CLOUD

ENVIRONMENTS

Torben Hoffmann
Erlang Solutions Ltd.

@LeHoff
http://musings-of-an-erlang-priest.blogspot.dk/

1Wednesday, 3 October 2012 W

http://musings-of-an-erlang-priest.blogspot.dk/
http://musings-of-an-erlang-priest.blogspot.dk/

© 1999-2012 Erlang Solutions Ltd.

Agenda

•Erlang fundamentals

•Challenges

2

2Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth?

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth? Yes

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth? Yes

The whole truth?

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth? Yes

The whole truth? No

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth? Yes

The whole truth? No

So help you OTP?

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 1: The Truth

3

Will you tell the truth? Yes

The whole truth? No

So help you OTP? Yes

3Wednesday, 3 October 2012 W

I will do a few simplifications in order to get the main points across.

© 1999-2012 Erlang Solutions Ltd.

Warning 2: Serious Love Ahead

4

I love Erlang!

4Wednesday, 3 October 2012 W

It was part of a major career shift and I have never looked back.
Apologies if I get too intense.

© 1999-2012 Erlang Solutions Ltd.

Realities Of Software Development

•Time-to-market pressure

•Utilisation of computing resources

•Scaling successes

•Maintenance burden

5

5Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

The future is here...

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

What Could Be...

6

The future is Erlang!
The future is here...

6Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines
Less code per feature
The future is here today - it’s called Erlang!

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

• Software maintenance on-the-fly

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

• Software maintenance on-the-fly

• High quality and reliability

7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

• Software maintenance on-the-fly

• High quality and reliability

• Fault tolerance
7

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

• Software maintenance on-the-fly

• High quality and reliability

• Fault tolerance
7

Sounds
familiar?

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Original Requirements

• Large scale concurrency

• Soft real-time

• Distributed systems

• Hardware interaction

• Very large software systems

• Complex functionality

• Continuous operation for many years

• Software maintenance on-the-fly

• High quality and reliability

• Fault tolerance
7

Sounds
familiar?

Sounds
good,
right?

7Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

C++/Java

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

C++/Java

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

Erlang

C++/Java

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

Erlang

C++/Java

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Small semantic gap

General vs Domain Specific

8

Telecom

Erlang

C++/Java

Smaller gap
=

benefits!

8Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang’s Sweet Spot

9

GUI

Drivers

Middleware
Coordination

Control

Erlang

9Wednesday, 3 October 2012 W

Erlang was intended to deal with the control plane in telecom, which is all about orchestration
of what goes on.
GUI and low-level things are not what Erlang was created for - hence Erlang has good
support for integration with other languages.
Read the wonderful doctor thesis by Bjarne Däcker if you want to learn more: http://
www.erlang.se/publications/bjarnelic.pdf

© 1999-2012 Erlang Solutions Ltd.

Other Erlang Domains

10

•Messaging - XMPP et al

- ejabberd, MongooseIM

•Webservers

- Yaws, Chicago Boss

•Payment switches & soft switches

- Vocalink, OpenFlow/LINC

•Distributed Databases

- Riak, CouchDB, Scalaris

10Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Other Erlang Domains

10

•Messaging - XMPP et al

- ejabberd, MongooseIM

•Webservers

- Yaws, Chicago Boss

•Payment switches & soft switches

- Vocalink, OpenFlow/LINC

•Distributed Databases

- Riak, CouchDB, Scalaris

If the tool fits,
you must select!

Tech Mesh Conference
4-5 December

London

10Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory

P1

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory

P1 P2

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory

P2

Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

MemoryCorrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory MemoryCorrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory Memory

P1

Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory Memory Memory

P1

Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory Memory Memory

P1 P2

Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory Memory

P2

Corrupt Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

To Share Or Not To Share

11

Memory Memory

P2

Corrupt

11Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.
No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

© 1999-2012 Erlang Solutions Ltd.

Dealing With Failures

12

P1 P2

P1 P2

link =
die together

monitor =
notification

of death

12Wednesday, 3 October 2012 W

The ability to link processes and monitor them is the key to adopting fail-fast fully.
Link & monitor works across machines!

© 1999-2012 Erlang Solutions Ltd.

Supervision Trees

13

worker

supervisor

workersupervisor

worker workerworker
The OTP library is

built on this principle

13Wednesday, 3 October 2012 W

Robust systems does not happen by accident - even in Erlang!
You have to think about the consequences of a worker process that fails and let the
supervisor take appropriate actions.
Using the OTP library’s components makes it straightforward to implement the supervision
tree, which has the added benefit that all things are started in the right order.
OTP is lightweight enough to allow fast prototyping and the prototype can evolve into a high
quality solution in a gradual way.

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Cores

14

Core

Scheduler

Processes

Core

Scheduler

Processes

14Wednesday, 3 October 2012 W

There is 1 scheduler per core.
The VM tries to load balance across the available cores.
Scales extremely well with the addition of extra cores - WITHOUT changing the programs!

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Machines

15

15Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You
can decompose the PID to figure out if it is a local process, but you do not need to do so -
locality is transparent.

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Machines

15

Node

15Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You
can decompose the PID to figure out if it is a local process, but you do not need to do so -
locality is transparent.

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Machines

15

Node Node

15Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You
can decompose the PID to figure out if it is a local process, but you do not need to do so -
locality is transparent.

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Machines

15

Node

Node

Node

15Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You
can decompose the PID to figure out if it is a local process, but you do not need to do so -
locality is transparent.

© 1999-2012 Erlang Solutions Ltd.

Distribution Over Machines

15

Node

NodeNode

Node

15Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide
what to do.
If you have the PID (Process Identifier) of a process you do not care which node it is on. You
can decompose the PID to figure out if it is a local process, but you do not need to do so -
locality is transparent.

© 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Staying Alive...

16

16Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

© 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Staying Alive...

16

16Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

© 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Staying Alive...

16

16Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

© 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Staying Alive...

16

16Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

© 1999-2012 Erlang Solutions Ltd.

Staying Alive Erlang Style

17

17Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

© 1999-2012 Erlang Solutions Ltd.

Staying Alive Erlang Style

17

v1

Process running

17Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

© 1999-2012 Erlang Solutions Ltd.

Staying Alive Erlang Style

17

Code loaded: v2

v1

Process running

17Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

© 1999-2012 Erlang Solutions Ltd.

Staying Alive Erlang Style

17

Code loaded: v2

v1

Process running

Code change signal

17Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

© 1999-2012 Erlang Solutions Ltd.

Staying Alive Erlang Style

17

Code loaded: v2

v1

Process running

Code change signal v2

17Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.
Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

© 1999-2012 Erlang Solutions Ltd.

Challenges

18

18Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

How Will I Know If It Really Scales?

19

???

Cores/Machines

Performance

19Wednesday, 3 October 2012 W

A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html
A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.

© 1999-2012 Erlang Solutions Ltd.

How Will I Know If It Really Scales?

19

Cores/Machines

Performance

Bencherl

19Wednesday, 3 October 2012 W

A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html
A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.

© 1999-2012 Erlang Solutions Ltd.

Who Is Doing What?

20

Core

Scheduler

Processes

Core

Scheduler

Processes

20Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Who Is Doing What?

20

Core

Scheduler

Processes

Core

Scheduler

Processes

When is this
process running?

20Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Who Is Doing What?

20

Core

Scheduler

Processes

Core

Scheduler

Processes

When is this
process running?

Who started
this guy?

20Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Percept2 To The Rescue

21

Active functions

21Wednesday, 3 October 2012 W

Percept: Erlang Concurrency Profiling Tool, utilizes trace informations and profiler events to
form a picture of the processes's and ports runnability.
Percept2 is an extension of Percept (part of the OTP release).
Extensions: # of schedulers active, active functions, process migration, message passing
stats, inter-node communication

© 1999-2012 Erlang Solutions Ltd.

R12B-1

Memory Alloc Previously

22

Slide title
minimum 32 pt

(32 pt makes 2 rows

Text and bullet level 1
 minimum 24 pt

Bullets level 2-5
minimum 20 pt

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞ
ßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂ
ăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃ
ńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲų
ŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄
€™−≤≥fifl

ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻ
ĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲ
ŴŴŶŶŹŹŻŻȘș

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰ
αβγδεζηθικλνξορςΣΤΥΦΧΨ¬ΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХ
ЦЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀ
ẁẂẃẄẅỲỳ№

Do not add objects or
text in the footer area

Taking a Virtual Machine Towards Many-Core | Public | © Ericsson AB 2012 | Rickard Green & Patrik Nyblom | 2012-05-29

Memory Allocators R12B-1

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

mseg_alloc
S

cheduler 1

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

S
cheduler 2

S
cheduler N

Thread 1

Thread N

Tuesday, May 29, 2012

22Wednesday, 3 October 2012 W

One central memory allocator for all schedulers on the same machine

© 1999-2012 Erlang Solutions Ltd.

R15B

Memory Alloc Now

23

Slide title
minimum 32 pt

(32 pt makes 2 rows

Text and bullet level 1
 minimum 24 pt

Bullets level 2-5
minimum 20 pt

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞ
ßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂ
ăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃ
ńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲų
ŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄
€™−≤≥fifl

ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻ
ĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲ
ŴŴŶŶŹŹŻŻȘș

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰ
αβγδεζηθικλνξορςΣΤΥΦΧΨ¬ΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХ
ЦЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀ
ẁẂẃẄẅỲỳ№

Do not add objects or
text in the footer area

Taking a Virtual Machine Towards Many-Core | Public | © Ericsson AB 2012 | Rickard Green & Patrik Nyblom | 2012-05-29

Memory Allocators R15B

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

mseg_alloc
S

cheduler 1

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

S
cheduler 2

S
cheduler N

Thread 1

Thread N

mseg_alloc mseg_alloc

sl_alloc

eheap_alloc

binary_alloc

ets_alloc

mseg_alloc

Tuesday, May 29, 2012 23Wednesday, 3 October 2012 W

One central memory allocator for all schedulers on the same machien

© 1999-2012 Erlang Solutions Ltd.

Upgrading Blocks

24

Current Code

Next Code

All schedulers blockedLoad code

24Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Upgrade Without Blocking

25

Current Code

Next Code

Last Code

Each scheduler does
it when needed

Load code

25Wednesday, 3 October 2012 W

Coming in R16!

© 1999-2012 Erlang Solutions Ltd.

Fully Connected

26

26Wednesday, 3 October 2012 W

Erlang connects all nodes fully.
So you get a lot of connections.

© 1999-2012 Erlang Solutions Ltd.

Scaling Over Machines

27

Node Node

Node

Node

Node

27Wednesday, 3 October 2012 W

A fully connected system might not be right for every problem.
s_groups allows you to create clusters of nodes.
Nodes inside a cluster are fully connected.
Connections between clusters can be arbitrary.

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

28

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

•Provision machines

28

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

•Provision machines

•Deploy Erlang application

28

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

•Provision machines

•Deploy Erlang application

•Attach to node

28

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

•Provision machines

•Deploy Erlang application

•Attach to node

•Dig out metrics

28

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Erlang Systems

•Provision machines

•Deploy Erlang application

•Attach to node

•Dig out metrics

28

Memory usage
CPU load
Process hierarchy

28Wednesday, 3 October 2012 W

Basic Erlang has the ability to go in and monitor what is going on in any node you can attach
yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.
This is no different from any other language/technology!

© 1999-2012 Erlang Solutions Ltd.

Managing Big Systems

29

CCL
/sɪˈsɪlɪ/

29Wednesday, 3 October 2012 W

Erlang Solutions are building a tool as part of the RELEASE project to manage and operate big
Erlang systems.
CCL = Cloud Computing Lace or Cloud Cuckoo Land depending on your mood.

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

•No direct support for

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

•No direct support for

- matrix multiplication

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

•No direct support for

- matrix multiplication

- ray tracing

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Erlang And Parallelism

•Created for

- explicit concurrency

- fault tollerance

- highly concurrent systems

•No direct support for

- matrix multiplication

- ray tracing

- coarse grained parallel problems

30

30Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Intensional Parallelism

31

31Wednesday, 3 October 2012 W

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations"

© 1999-2012 Erlang Solutions Ltd.

Intensional Parallelism

•Lucid like: demand-driven data computation

•Find short comings in the Erlang VM

•Variables are infinite streams of values

31

31Wednesday, 3 October 2012 W

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations"

© 1999-2012 Erlang Solutions Ltd.

Intensional Parallelism

•Lucid like: demand-driven data computation

•Find short comings in the Erlang VM

•Variables are infinite streams of values

31

running_avg
 where
 sum = first(input) fby sum + next(input);
 n = 1 fby n + 1;
 running_avg = sum / n;
 end;

31Wednesday, 3 October 2012 W

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations"

© 1999-2012 Erlang Solutions Ltd.

Intensional Parallelism

•Lucid like: demand-driven data computation

•Find short comings in the Erlang VM

•Variables are infinite streams of values

31

running_avg
 where
 sum = first(input) fby sum + next(input);
 n = 1 fby n + 1;
 running_avg = sum / n;
 end;

Black magic

31Wednesday, 3 October 2012 W

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations"

© 1999-2012 Erlang Solutions Ltd.

Going Forward

32

32Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Going Forward

•Consider Erlang when the problem fits

32

32Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Going Forward

•Consider Erlang when the problem fits

•More focus on right tool for the job

32

32Wednesday, 3 October 2012 W

© 1999-2012 Erlang Solutions Ltd.

Going Forward

•Consider Erlang when the problem fits

•More focus on right tool for the job

32

32Wednesday, 3 October 2012 W

