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Warning 2: Serious Love Ahead

| love Erlang!
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It was part of a major career shift and | have never looked back.
Apologies if | get too intense.



Realities Of Software Development

. Time-to-market pressure

. Utilisation of computing resources
. Scaling successes

. Maintenance burden
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What Could Be...
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3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!
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Erlang’s Original Requirements

. Large scale concurrency
. Soft real-time Sounds
. Distributed systems familiar?

« Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years
. Software maintenance on-the-fly

. High quality and reliability
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Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time Sounds
. Distributed systems familiar?
. . A
. Hardware interaction
. Very large software systems wu'”-?s
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« Complex functionality OOr
right?
. Continuous operation for many years \ ’

. Software maintenance on-the-fly
. High quality and reliability

. Fault tolerance
(S.‘M © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W



General vs Domain Specific

Small semantic gap
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General vs Domain Specific

Small semantic gap

lecom
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Smaller gap

benefits!
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Erlang’s Sweet Spot

GUI

Middleware
Erlang Coordination
Control

Drivers
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Erlang was intended to deal with the control plane in telecom, which is all about orchestration
of what goes on.

GUI and low-level things are not what Erlang was created for - hence Erlang has good
support for integration with other languages.

Read the wonderful doctor thesis by Bjarne Dacker if you want to learn more: http://




Other Erlang Domains

. Messaging - XMPP et al
- ejabberd, MongooselM

« Webservers

- Yaws, Chicago Boss

. Payment switches & soft switches
- Vocalink, OpenFlow/LINC

o Distributed Databases
- Riak, CouchDB, Scalaris
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Other Erlang Domains

If the tool fits,
_ you must select!
- Messaging - XMPP et al Tech Mesh Conference
- ejabberd, MongooselM 4-5 December
London
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- Yaws, Chicago Boss

. Payment switches & soft switches
- Vocalink, OpenFlow/LINC

o Distributed Databases
- Riak, CouchDB, Scalaris

(SM © 1999-2012 Erlang Solutions Ltd. 10

Wednesday, 3 October 2012 W



To Share Or Not To Share
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Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.
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Dealing With Failures

link =
> die together
monitor =
@ *. notification
of death
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The ability to link processes and monitor them is the key to adopting fail-fast fully.
Link & monitor works across machines!
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Supervision Trees

worker worker

The OTP library is
built on this principle

worker worker
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Robust systems does not happen by accident - even in Erlang!
You have to think about the consequences of a worker process that fails and let the
supervisor take appropriate actions.

Using the OTP library’s components makes it straightforward to implement the supervision
tree, which has the added benefit that all things are started in the right order.

13



Distribution Over Cores

Core
>

Scheduler

o ©

Processes

O
O

Core
q

Scheduler

O
050 o

Processes O

O

O
O

O
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There is 1 scheduler per core.
The VM tries to load balance across the available cores.

Scales extremely well with the addition of extra cores - WITHOUT changing the programs!
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Distribution Over Machines
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Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You
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Distribution Over Machines

Node

NodeJ

Node
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Staying Alive...
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As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.
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As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.



Staying Alive Erlang Style
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With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should
be updated before continuing.
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Code loaded: v2

(gn‘éag © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.



Staying Alive Erlang Style

Process running

Code change signal ——>@

Code loaded: v2

én‘&y © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.



Staying Alive Erlang Style

Process running

Code change signal ——>@

Code loaded: v2

én‘&y © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.



Challenges
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How Will | Know If It Really Scales?

Performance
A

77

>

Cores/Machines
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A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html

A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.
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Who Is Doing What?

Core Core
Scheduler Scheduler
O
~ O ehgelNe
O O
Processes O Proce%s)es
O O O

S
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Percept2 To The Rescue

Active functions

overview | function activities
pid module:function/arity activity function start/end secs monitor start/end secs
<0.36.0> {sim_code,sim_code_detection, 8} {1.0e-6,2.854873} {0.419,1.1255}
<0.36.0> {sim_code,sim_code_detection, 4} {0.016239,2.839082} {0.419,1.1255}
<0.36.0> {sim_code,sim_code_detection_1,6}_ {0.016253,2.607782} {0.419,1.1255}
<0.36.0> {sim_code,generalise_and_hash_ast,6ym_] {0.016274,2.607782} {0.419,1.1255}
<0.36.0> {sim_code pforeach,2} e {0.016275,2.607782} {0.419,1.1255}
<0.775.0> {sim_code,pforeach_1,3} {0.016385,2.607765} {0.419,1.1255}
<0.775.0> {sim_code,"-generalise_and_hash_ast/é6-fun-0-',6} ] {0.016386,2.607761} {0.419,1.1255}
<0.775.0> {sim_code,generalise_and_hash_file_ast_1,7 ) {0.016387,2.607761} {0.419,1.1255}
<0.775.0> {sim_code pforeach,2 ) I—— {1.107858,2.607761} {0.419,1.1255}
<0.776.0> {sim_code,pforeach_1,3} S {0.016393,0.454145} {0.419,1.1255}
<0.776.0> {sim_code,"-generalise_and_hash_ast/6-fun-0-',6 ) {0.016394,0.454131} {0.419,1.1255}
<0.776.0> {sim_code,generalise_and_hash_fie_ast_1,7 ) I {0.016395,0.454131} {0.419,1.1255}
<0.776.0> {sim_code pforeach,2 ) S {0.265244,0.454131} {0.419,1.1255}
<0.780.0> {sim_code,pforeach_1,3} {0.016425,0.454381} {0.419,1.1255}
<0.780.0> {sim_code,"-generalise_and_hash_ast/6-fun-0-',6} I {0.016426,0.454377} {0.419,1.1255}
<0.780.0> {sim_code,generalise_and_hash_fie_ast_1,7 ) {0.016427,0.454377} {0.419,1.1255}
<0.780.0> {sim_code pforeach,?2 ) Bl {0.32833,0.454377} {0.419,1.1255}
<0.891.0> {sim_code,pforeach_0,3} EEmmm {0.26539,0.454128} {0.419,1.1255}
<0.891.0> {sim_code,pforeach_wait, 2 } I {0.265718,0.454116% {0.419,1.1255}
<0.891.0> {sim_code,pforeach_wait, 2 } I {0.265979,0.454116} {0.419,1.1255%
<0.893.0> {sim_code,pforeach_1,3 } I {0.265735,0.454025% {0.419,1.1255%}
<0.893.0> {sim_code,’-generalise_and_hash_file_ast_1/7-fun-1-",2} I {0.265736,0.45402% {0.419,1.1255%
> {sim_code,"'-generalise_and_hash_file_ast_1/7-fun-0-',6} I {0.265737,0.45402% {0.419,1.1255}

{sim_code,generalise_and_hash_function_ast, 6} I

{0.265738,0.45402}

{0.419,1.1255}

© 1999-2012 Erlang Solutions Ltd. 2
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Percept: Erlang Concurrency Profiling Tool, utilizes trace informations and profiler events to
form a picture of the processes's and ports runnability.

Percept?2 is an extension of Percept (part of the OTP release).

Extensions: # of schedulers active, active functions, process migration, message passing
stats, inter-node communication



Memory Alloc Previously
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One central memory allocator for all schedulers on the same machine
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Memory Alloc Now
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Upgrading Blocks

Current Code

Next Code

Load code

S

> All schedulers blocked
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Upgrade Without Blocking

Current Code

Next Code
Last Code
Each scheduler does
Load code .
it when needed
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Coming in R16!



Fully Connected
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Erlang connects all nodes fully.
So you get a lot of connections.



Scaling Over Machines

CHO

Nody
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A fully connected system might not be right for every problem.
s_groups allows you to create clusters of nodes.
Nodes inside a cluster are fully connected.

Connections between clusters can be arbitrary.
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Managing Erlang Systems

é‘b&lg © 1999-2012 Erlang Solutions Ltd. )8

Wednesday, 3 October 2012 W
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!
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Managing Erlang Systems

« Provision machines

. Deploy Erlang application
. Attach to node

« Dig out metrics

Memory usage
CPU load
Process hierarchy
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Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!



Managing Big Systems
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Erlang Solutions are building a tool as part of the RELEASE project to manage and operate big
Erlang systems.

CCL = Cloud Computing Lace or Cloud Cuckoo Land depending on your mood.



Erlang And Parallelism
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Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

. No direct support for

- matrix multiplication
- ray tracing
- coarse grained parallel problems
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Intensional Parallelism
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We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”
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Intensional Parallelism

. Lucid like: demand-driven data computation
. Find short comings in the Erlang VM
. Variables are infinite streams of values

running avg
where
sum = first(input) fby sum + next(input);
n =1 fby n + 1;
running avg = sum / n;
end;
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Intensional Parallelism

. Lucid like: demand-driven data computation
. Find short comings in the Erlang VM
. Variables are infinite streams of values

running avg Black magic
where
sum = first(input) fby sum + next(input);
n =1 fby n + 1;
running avg = sum / n;
end;
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We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”
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Going Forward

. Consider Erlang when the problem fits
. More focus on right tool for the job
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The Alternative Programming Conference
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