got()

conference
........ = aar hug

ERLANG EVOLVES
FOR MULTI-CORE AND CLOUD

Torben Hoffmann -
Erlang Solutions Ltd. 2
@LeHoff 7 {f
http://musings-of-an- edﬁhq-pnest blogspot dlg/
INTERNATIONAL | f f) (& ;j [7
SOFTWARE DEVELOPMENT e "\ e / / .
CONFERENCE '@\ | “&)s === gotqcon con i,f»

Wednesday, 3 October 2012 W

http://musings-of-an-erlang-priest.blogspot.dk/
http://musings-of-an-erlang-priest.blogspot.dk/

Agenda

. Erlang fundamentals

. Challenges

(&‘W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Warning 1: The Truth

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth?

(&‘W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth!? Yes

(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth!? Yes
The whole truth?

é‘b&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth!? Yes
The whole truth? No

é‘b&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth!? Yes
The whole truth? No
So help you OTP?

(S"éag © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 1: The Truth

Will you tell the truth!? Yes

The whole truth? No
So help you OTP? Yes
é.‘&zy © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W
| will do a few simplifications in order to get the main points across.

Warning 2: Serious Love Ahead

| love Erlang!

(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

It was part of a major career shift and | have never looked back.
Apologies if | get too intense.

Realities Of Software Development

. Time-to-market pressure

. Utilisation of computing resources
. Scaling successes

. Maintenance burden

é‘b&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

What Could Be...

ér‘w © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

(&‘W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

G mplchnés

(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

Kl -
V1@ Y D—
“'_ P

Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

The future is here...

Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

What Could Be...

L pE——==———"7—7 The future is here...
g/ - 4 @
/ v e The future is Erlang!

Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

3x productivity over C++/Java
Seamless scaling on multicore
Scaling nicely over machines

Less code per feature
The future is here today - it’s called Erlang!

Erlang’s Original Requirements

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency
. Soft real-time

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency
. Soft real-time
. Distributed systems

(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency
. Soft real-time

. Distributed systems

. Hardware interaction

(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems

é‘b&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems
. Complex functionality

éM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years

én‘w © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years
. Software maintenance on-the-fly

én‘&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years
. Software maintenance on-the-fly

. High quality and reliability

é-‘w © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time

. Distributed systems

. Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years
. Software maintenance on-the-fly

. High quality and reliability

. Fault tolerance
éiéalg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency
. Soft real-time Sounds
. Distributed systems familiar?

« Hardware interaction

. Very large software systems

. Complex functionality

. Continuous operation for many years
. Software maintenance on-the-fly

. High quality and reliability

. Fault tolerance
(SM © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang’s Original Requirements

. Large scale concurrency

. Soft real-time Sounds
. Distributed systems familiar?
. . A
. Hardware interaction
. Very large software systems wu'”-?s
- : g00d,
« Complex functionality OOr
right?
. Continuous operation for many years \ ’

. Software maintenance on-the-fly
. High quality and reliability

. Fault tolerance
(S.‘M © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

W © 1999-2012 Erlang Solutions Ltd.

SSSSSSS

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

W © 1999-2012 Erlang Solutions Ltd.

SSSSSSS

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

W © 1999-2012 Erlang Solutions Ltd.

SSSSSSS

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

W © 1999-2012 Erlang Solutions Ltd.

SSSSSSSSSS

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

W © 1999-2012 Erlang Solutions Ltd.

SSSSSSSSSS

Wednesday, 3 October 2012 W

General vs Domain Specific

Small semantic gap

lecom

\mm—

Smaller gap

benefits!

W © 1999-2012 Erlang Solutions Ltd.

0000000000

Wednesday, 3 October 2012 W

Erlang’s Sweet Spot

GUI

Middleware
Erlang Coordination
Control

Drivers

éz&l/g © 1999-2012 Erlang Solutions Ltd. 9

Wednesday, 3 October 2012 W 9

Erlang was intended to deal with the control plane in telecom, which is all about orchestration
of what goes on.

GUI and low-level things are not what Erlang was created for - hence Erlang has good
support for integration with other languages.

Read the wonderful doctor thesis by Bjarne Dacker if you want to learn more: http://

Other Erlang Domains

. Messaging - XMPP et al
- ejabberd, MongooselM

« Webservers

- Yaws, Chicago Boss

. Payment switches & soft switches
- Vocalink, OpenFlow/LINC

o Distributed Databases
- Riak, CouchDB, Scalaris

ér‘w © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

10

Other Erlang Domains

If the tool fits,
_ you must select!
- Messaging - XMPP et al Tech Mesh Conference
- ejabberd, MongooselM 4-5 December
London
. Webservers N

- Yaws, Chicago Boss

. Payment switches & soft switches
- Vocalink, OpenFlow/LINC

o Distributed Databases
- Riak, CouchDB, Scalaris

(SM © 1999-2012 Erlang Solutions Ltd. 10

Wednesday, 3 October 2012 W

To Share Or Not To Share

(S"éag © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Memory

é“W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Memory

é“W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Memory

én‘&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt

é“W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt

é“W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt Memory

én‘&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

To Share Or Not To Share

Corrupt Memory

Pl

én‘&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast
programming.

No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

To Share Or Not To Share

Corrupt

Gl

Memory

Pl

© 1999-2012 Erlang Solutions Ltd.

Memory

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast

programming.

No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt

Sl

Memory

Pl

© 1999-2012 Erlang Solutions Ltd.

Memory

P2

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast

programming.

No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt

Gl

Corrupt

© 1999-2012 Erlang Solutions Ltd.

Memory

P2

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast

programming.

No shared memory allows you to fail fast when suitable.
Erlang uses message passing between processes to exchange information.

11

To Share Or Not To Share

Corrupt

é-‘w © 1999-2012 Erlang Solutions Ltd.

Memory

P2

Wednesday, 3 October 2012 W

Death propagates in shared memory unless you do a ton of defensive programming.
Due to the actor model with no shared memory it is custom in Erlang to do fail-fast

programming.
No shared memory allows you to fail fast when suitable.

Erlang uses message passing between processes to exchange information.

11

Dealing With Failures

link =
> die together
monitor =
@ *. notification
of death

én‘&lg © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

The ability to link processes and monitor them is the key to adopting fail-fast fully.
Link & monitor works across machines!

12

Supervision Trees

worker worker

The OTP library is
built on this principle

worker worker

é‘b&lg © 1999-2012 Erlang Solutions Ltd. 13

Wednesday, 3 October 2012 W

Robust systems does not happen by accident - even in Erlang!
You have to think about the consequences of a worker process that fails and let the
supervisor take appropriate actions.

Using the OTP library’s components makes it straightforward to implement the supervision
tree, which has the added benefit that all things are started in the right order.

13

Distribution Over Cores

Core
>

Scheduler

o ©

Processes

O
O

Core
q

Scheduler

O
050 o

Processes O

O

O
O

O

Sl

© 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

There is 1 scheduler per core.
The VM tries to load balance across the available cores.

Scales extremely well with the addition of extra cores - WITHOUT changing the programs!

14

Distribution Over Machines

(S“W © 1999-2012 Erlang Solutions Ltd. s

15

Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You

Distribution Over Machines

(gn‘éag © 1999-2012 Erlang Solutions Ltd. 5

15

Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You

Distribution Over Machines

@ @

én‘w © 1999-2012 Erlang Solutions Ltd. 5

15

Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You

Distribution Over Machines

Node

NodeJ

Node

én‘&y © 1999-2012 Erlang Solutions Ltd. 5

15

Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You

Distribution Over Machines

Node Node

Nob /Node

én‘&lg © 1999-2012 Erlang Solutions Ltd. 5

15

Wednesday, 3 October 2012 W

Each instance of the Erlang runtime is called a node.
There can be several nodes on one machine if you fancy that.
Nodes detect when other nodes are not around any more - the programmer can then decide

what to do.
If you have the PID (Process ldentifier) of a process you do not care which node it is on. You

Staying Alive...

(&‘W © 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

16

Staying Alive...

LAVHI BOWIE
20 P,

@LM © 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

16

Staying Alive...

1«"

D/Wll) BUW II~

— —
N

|- l' K";

vy :
‘-\ A ') S
S : =<, A s
-(I“ s . 5 P i
PDOSOOPOSOOS
'1.. -
4

900000 &I R

-
: - . & = . -
L L R B N\
LY e i) qs.\‘ f:__
" - .) 'v

[T

of
-

W © 1999-2012 Erlang Solutions Ltd.

Learn New Moves!

Wednesday, 3 October 2012 W

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

16

Staying Alive...

Learn New Moves!

L DAVII) BOWIF:

W g

&

) @
&80
R ."

PODCOCOPOO
POOCOOLARNE
. @ i L o\ WA
T : " " 7 ’

’ ’
-
-

A

"< a = 2 2 - =
Y CEEELY
- " g .' & (] 5 > -

of
-

{ ¥}

W © 1999-2012 Erlang Solutions Ltd. 16

Wednesday, 3 October 2012 W 16

As style changed a new group entered the top of the hip scale.
For most it meant a serious restart or a stop altogether.

Staying Alive Erlang Style

ér‘w © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

17

Staying Alive Erlang Style

Process running

é‘b&lg © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W

With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should
be updated before continuing.

17

Staying Alive Erlang Style

Process running

Code loaded: v2

(gn‘éag © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.

Staying Alive Erlang Style

Process running

Code change signal ——>@

Code loaded: v2

én‘&y © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.

Staying Alive Erlang Style

Process running

Code change signal ——>@

Code loaded: v2

én‘&y © 1999-2012 Erlang Solutions Ltd. |7

Wednesday, 3 October 2012 W 17
With Erlang you can survive upgrades without loosing service.

Along with the code change signal you specify how the internal state of the process should

be updated before continuing.

Challenges

© 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

18

How Will | Know If It Really Scales?

Performance
A

77

>

Cores/Machines

én‘w © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html

A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.

19

How Will | Know If It Really Scales?

Performance
A

Benqheﬂ

Cores/Machines

é“W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

A Scalability Benchmark Suite for Erlang/OTP.
http://www.softlab.ntua.gr/release/bencherl/index.html

A number of synthetic benchmarks plus real-world (dialyzer and scalaris).
Extendable to test your own application.

19

Who Is Doing What?

Core Core
Scheduler Scheduler
O
~ O ehgelNe
O O
Processes O Proce%s)es
O O O

S

© 1999-2012 Erlang Solutions Ltd.

20

Wednesday, 3 October 2012 W

Who Is Doing What?

Core

Scheduler

® O
Processes

O

O

Core
\

O

heduler

O

e

Processes O

O

Sulagd

© 1999-2012 Erlang Solutions Ltd.

20

Wednesday, 3 October 2012 W

Who Is Doing What?

Core Core
\

Scheduler heduler

o © O o

Processes

Wednesday, 3 October 2012 W

Percept2 To The Rescue

Active functions

overview | function activities
pid module:function/arity activity function start/end secs monitor start/end secs
<0.36.0> {sim_code,sim_code_detection, 8} {1.0e-6,2.854873} {0.419,1.1255}
<0.36.0> {sim_code,sim_code_detection, 4} {0.016239,2.839082} {0.419,1.1255}
<0.36.0> {sim_code,sim_code_detection_1,6}_ {0.016253,2.607782} {0.419,1.1255}
<0.36.0> {sim_code,generalise_and_hash_ast,6ym_] {0.016274,2.607782} {0.419,1.1255}
<0.36.0> {sim_code pforeach,2} e {0.016275,2.607782} {0.419,1.1255}
<0.775.0> {sim_code,pforeach_1,3} {0.016385,2.607765} {0.419,1.1255}
<0.775.0> {sim_code,"-generalise_and_hash_ast/é6-fun-0-',6}] {0.016386,2.607761} {0.419,1.1255}
<0.775.0> {sim_code,generalise_and_hash_file_ast_1,7) {0.016387,2.607761} {0.419,1.1255}
<0.775.0> {sim_code pforeach,2) I—— {1.107858,2.607761} {0.419,1.1255}
<0.776.0> {sim_code,pforeach_1,3} S {0.016393,0.454145} {0.419,1.1255}
<0.776.0> {sim_code,"-generalise_and_hash_ast/6-fun-0-',6) {0.016394,0.454131} {0.419,1.1255}
<0.776.0> {sim_code,generalise_and_hash_fie_ast_1,7) I {0.016395,0.454131} {0.419,1.1255}
<0.776.0> {sim_code pforeach,2) S {0.265244,0.454131} {0.419,1.1255}
<0.780.0> {sim_code,pforeach_1,3} {0.016425,0.454381} {0.419,1.1255}
<0.780.0> {sim_code,"-generalise_and_hash_ast/6-fun-0-',6} I {0.016426,0.454377} {0.419,1.1255}
<0.780.0> {sim_code,generalise_and_hash_fie_ast_1,7) {0.016427,0.454377} {0.419,1.1255}
<0.780.0> {sim_code pforeach,?2) Bl {0.32833,0.454377} {0.419,1.1255}
<0.891.0> {sim_code,pforeach_0,3} EEmmm {0.26539,0.454128} {0.419,1.1255}
<0.891.0> {sim_code,pforeach_wait, 2 } I {0.265718,0.454116% {0.419,1.1255}
<0.891.0> {sim_code,pforeach_wait, 2 } I {0.265979,0.454116} {0.419,1.1255%
<0.893.0> {sim_code,pforeach_1,3 } I {0.265735,0.454025% {0.419,1.1255%}
<0.893.0> {sim_code,’-generalise_and_hash_file_ast_1/7-fun-1-",2} I {0.265736,0.45402% {0.419,1.1255%
> {sim_code,"'-generalise_and_hash_file_ast_1/7-fun-0-',6} I {0.265737,0.45402% {0.419,1.1255}

{sim_code,generalise_and_hash_function_ast, 6} I

{0.265738,0.45402}

{0.419,1.1255}

© 1999-2012 Erlang Solutions Ltd. 2

Wednesday, 3 October 2012 W

Percept: Erlang Concurrency Profiling Tool, utilizes trace informations and profiler events to
form a picture of the processes's and ports runnability.

Percept?2 is an extension of Percept (part of the OTP release).

Extensions: # of schedulers active, active functions, process migration, message passing
stats, inter-node communication

Memory Alloc Previously

| Ja|npayos
Z Ja|npayos

R12B-1

N Ja|npayos

W © 1999-2012 Erlang Solutions Ltd.

22

Wednesday, 3 October 2012 W
One central memory allocator for all schedulers on the same machine

22

Memory Alloc Now

R15B
n
D & o
= = -2
¢) 0] ¢)
S o oo oo o
c c c
2 2 2
—_ N Z

[] [] ® []
[] [L {
= r r r r
A [| - -

W © 1999-2012 Erlang Solutions Ltd. 723

Wednesday, 3 October 2012 W
One central memory allocator for all schedulers on the same machien

23

Upgrading Blocks

Current Code

Next Code

Load code

S

> All schedulers blocked

© 1999-2012 Erlang Solutions Ltd.

24

Wednesday, 3 October 2012 W

24

Upgrade Without Blocking

Current Code

Next Code
Last Code
Each scheduler does
Load code .
it when needed
é.‘éay © 1999-2012 Erlang Solutions Ltd. .

Wednesday, 3 October 2012 W

Coming in R16!

Fully Connected

A

4

\

SN\
S
'%9,

7;/14
A
IR

S
-~

N

s

. ;%
&
Ve
q\'

1/

<
)
Y/

)
y

7
S

7

RS
: 4 9’

[/ (

A

W © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

Erlang connects all nodes fully.
So you get a lot of connections.

Scaling Over Machines

CHO

Nody

éz&l/g © 1999-2012 Erlang Solutions Ltd.

Wednesday, 3 October 2012 W

27

A fully connected system might not be right for every problem.
s_groups allows you to create clusters of nodes.
Nodes inside a cluster are fully connected.

Connections between clusters can be arbitrary.

27

Managing Erlang Systems

é‘b&lg © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

28

Managing Erlang Systems

« Provision machines

éM © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

28

Managing Erlang Systems

« Provision machines
. Deploy Erlang application

én‘w © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

28

Managing Erlang Systems

« Provision machines
. Deploy Erlang application
. Attach to node

én‘&y © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

28

Managing Erlang Systems

« Provision machines

. Deploy Erlang application
. Attach to node

« Dig out metrics

én‘&lg © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W 28
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

Managing Erlang Systems

« Provision machines

. Deploy Erlang application
. Attach to node

« Dig out metrics

Memory usage
CPU load
Process hierarchy

éz&l/g © 1999-2012 Erlang Solutions Ltd.)8

Wednesday, 3 October 2012 W 28
Basic Erlang has the ability to go in and monitor what is going on in any node you can attach

yourself to.
But no tool exists to manage a big number of nodes in a coherent fashion.

This is no different from any other language/technology!

Managing Big Systems
1 G (CL

A
~ ™
£ N I
¥ ¥
Websockets HTTP TCP
‘ ¥ ¥
Cowboy Dispatcher
i ¥ ¥ ¥ M
Metrcs Handar User Handler Cluster Hancler Resowee Hander
Wob Sarvor -~
. J f[—
A] y / \
~ . a T Y4 N
EC2

Code Fetchar Adapter
YM'Ware
Adapler < N

Real Hardware
Adapter
Meavics Manager User Manager Cuuster Manager Resource Manager
e /LN w) J L J

OM Central A) [}
\ \\) °

Metrics Store

sQL DB ? Code
No-SQL DB
SSL

RabbitMQ (7) Broker Cluster

W © 1999-2012 Erlang Solutions Ltd. 29

\N

Wednesday, 3 October 2012 W 29
Erlang Solutions are building a tool as part of the RELEASE project to manage and operate big
Erlang systems.

CCL = Cloud Computing Lace or Cloud Cuckoo Land depending on your mood.

Erlang And Parallelism

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

. No direct support for

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

. No direct support for

- matrix multiplication

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

. No direct support for

- matrix multiplication
- ray tracing

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Erlang And Parallelism

« Created for

- explicit concurrency
- fault tollerance
- highly concurrent systems

. No direct support for

- matrix multiplication
- ray tracing
- coarse grained parallel problems

W © 1999-2012 Erlang Solutions Ltd.

30

Wednesday, 3 October 2012 W

30

Intensional Parallelism

W © 1999-2012 Erlang Solutions Ltd. 3]

Wednesday, 3 October 2012 W 31

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”

Intensional Parallelism

. Lucid like: demand-driven data computation
. Find short comings in the Erlang VM
. Variables are infinite streams of values

(S.‘M © 1999-2012 Erlang Solutions Ltd. 3]

Wednesday, 3 October 2012 W 31

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”

Intensional Parallelism

. Lucid like: demand-driven data computation
. Find short comings in the Erlang VM
. Variables are infinite streams of values

running avg
where
sum = first(input) fby sum + next(input);
n =1 fby n + 1;
running avg = sum / n;
end;

(&‘W © 1999-2012 Erlang Solutions Ltd. 3]

Wednesday, 3 October 2012 W 31

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”

Intensional Parallelism

. Lucid like: demand-driven data computation
. Find short comings in the Erlang VM
. Variables are infinite streams of values

running avg Black magic
where
sum = first(input) fby sum + next(input);
n =1 fby n + 1;
running avg = sum / n;
end;

(SM © 1999-2012 Erlang Solutions Ltd. 3]

Wednesday, 3 October 2012 W 31

We are taking the good things from what has been learnt in the Haskell & Data-flow language
communities and building a DSL which helps us leverage these types of parallel optimisations”

Going Forward

W © 1999-2012 Erlang Solutions Ltd.

32

Wednesday, 3 October 2012 W

32

Going Forward

. Consider Erlang when the problem fits

(&‘W © 1999-2012 Erlang Solutions Ltd.

32

Wednesday, 3 October 2012 W

32

Going Forward

. Consider Erlang when the problem fits
. More focus on right tool for the job

(S“W © 1999-2012 Erlang Solutions Ltd.

32

Wednesday, 3 October 2012 W

32

Going Forward

. Consider Erlang when the problem fits
. More focus on right tool for the job

MESH

The Alternative Programming Conference
LJ - \
I:rl—(ll-l] MICWO TMIN0IWN T N0IvIdM0TIDIOTN

b=b~DECEMBER 20Lc

éM © 1999-2012 Erlang Solutions Ltd.

32

Wednesday, 3 October 2012 W

32

