goto

conference
aarhus

JAVA FOR
SAFETY CRITICAL EMBEDDED

HARD-REAL-TIME SYSTEMS

Bent Thomsen

Aalborg UnlverS|ty
O /3

INTERNATIONAL
SOFTWARE DEVELOPMENT

CONFERENCE




A typical safety critical embedded
hard-real-time program

Cruise control:

Loop every X microseconds
Read the sensors;
Compute speed;
if speed too high
Compute pressure for brake pedal;
if speed too low
Compute pressure for accelerator;
Transmit the outputs to actuators;
wait for next period;

How hard can it be to program such systems?



Aparently hard enough

 Toyota's Accelerator Problem Probably Caused
by Embedded Software Bugs

e Software Bug Causes Toyota Recall of Almost
Half a Million New Hybrid Cars

e BMW recall: The company will replace

defective high-pressure fuel pump and update
software in 150,000 vehicles.



Some examples

e The Ariane 5 satellite launcher malfunction

— caused by a faulty software exception routine
resulting from a bad 64-bit floating point to 16-bit
integer conversion

e LA Air Traffic control system shutdown (2004)
— Caused by count down timer reaching zero

e Airbus A330 nose-diving twice while at cruising
altitude (2001)

— 39 injured, 12 seriously. Problem never found



A hard real-time problem




Embedded Systems

e Over 90% of all microprocessors are used for real-
time and embedded systems

— Market growing 10% year on year

e Usually programmed in C or Assembler
— Hard, error prone, work

— But preferred choice

e Close to hardware

e No real alternatives Well ... ADA —10th on the list of most wanted skills
— Difficult to find new skilled programmers

e Jackson Structured Development (1975) still widely used

e EE Times calling for re-introducing C programming at US Uni



Model Driven Development

Develop Model of System
Verify desirable properties
Generate Code from Model

nnnnnnnnn

el==El,

But ..

— Many finds developing models harder than programming
— Often some parts have to be programmed anyhow

— Model and code have tendency to drift apart



We need to look for other languages

The number of embedded systems is growing
More functionality in each system is required
More reliable systems are needed

Time to market is getting shorter

Increase productivity
— Software engineering practices (OOA&D) — 10%
— Tools (IDEs, analyzers and verifiers) — 10%

— New Languages -700%
e 200%-300% in embedded systems programming (Atego)



Java

 Most popular programming language ever !

— In 2005 Sun estimated 4.5 million Java
programmers

—In 2010 Oracle estimated 9 million Java ,{ﬁ\
programmers

— 61% of all programmers are Java programmers
e Originally designed for setop-boxes
e But propelled to popularity by the internet

http://jaxenter.com/how-many-java-developers-are-there-10462.html



27.5 1

25.0 1

22.5 1

Normalized fraction of total hits (%)

5.0 1

2.5 1

00

20.0 1

17.5 -

15.0 -

125 1

10.0 -

75 -

TIOBE Programming Community Index

2002 2003 2004 2005

P ———

2006 2007 2008 2009 20' 10 20T1 1

Time
—C ——C++ - PHP (Visual) Basic JavaScript
- Java == Objective-C C# -~ Python - Transact-SQL

2012

2013



Advantage of Java over C and C++

Clean syntax and (relative) clean semantics
No preprocessor

Wide range of tool support

Single dispatch style OOP

Strong, extendible type system

Better support for separating subtyping and reuse via
interfaces and single inheritance

No explicit pointer manipulation

Pointer safe deallocation

Built-in Concurrency model

Portability via JVM (write once, run anywhere)



Embedded hard real-time
safety-critical systems

Nuclear Power plants, car-control systems, aeroplanes etc.

Embedded Systems
e Limited Processor power
e Limited memory
e Resources matter!
Hard real-time systems
* Timeliness
Safety-critical systems
e Functional correctness

Grundfos pumps and SKOV pig farm air conditions
Aalborg Industries (ship boilers) and Therma (aero, defence)
GomSpace and NASA



What is the problem with Java?

 Unpredictable performance
— Memory
e Garbage collected heap

— Control and data flow
* Dynamic class loading
* Recursion
 Unbounded loops
e Dynamic dispatch
— Scheduling
— Lack high resolution time

e JVM
— Good for portability — bad for predicatbility



Observation

There is essentially only one way to get a more
predictable language:

e namely to select a set of features which makes
it controllable.

 Which implies that a set of features can be
deselected as well



Real-Time Java Profiles

e RTSJ (JSR 001)
— The Real-Time Specification for Java
— An attempt to cover everything
— too complex and dynamic
— Not suitable for high integrity systems

e Safety-Critical Java (draft) (JSR 302)
— Subset of RTS!J
— Focus on simplicity, analysability, and certification
— No garbage collection: Scoped memory
— Missions and Handlers (and some threads)
— Implementation: sub-classes of RTSJ
* Predictable Java
— Super classes for RTS)
— Simple structure
— Inspiration for SCJ



Real-Time Specification for Java (RTSJ)

e Java Community Standard (JSR 1, JSR 282)

— Started in 1998
e January 2002 — RTSJ 1.0 Accepted by JSP
e Spring 2005 — RTSJ 1.0.1 released
e Summer 2006 — RTSJ 1.0.2 initiated
 March 2009 Early draft of RTSJ version 1.1 now called JSR 282.

e Most common for real-time Java applications
— Especially on Wall Street

e New Thread model: NoHeapRealtimeThread
— Never interrupted by Garbage Collector
— Threads may not access Heap Objects
— Extends Java’s 10 priority levels to 28



RTSJ Overview

heap‘

Clear definition of scheduler
Priority inheritance protocol
NoHeapRealtimeThread
BoundAsyncEventHandler
Scoped memory to avoid GC
Low-level access through raw memory
High resolution time and timer

Originally targeted at larger systems

— implementation from Sun requires a dual
UltraSparc lll or higher with 512 MB memory and
the Solaris 10 operating system




RTSJ Guiding Principles

Backward compatibility to standard Java

No Syntactic extension

Write Once, Run Anywhere

Reflected current real-time practice anno 1998
Allow implementation flexibility

Does not address certification of Safety Critical
applications



Safety-Critical Java (SCJ)

Java Specification Request 302
Aims for DO178B, Level A

Three Compliance Points (Levels O, 1, 2)

— Level O provides a cyclic executive (single thread), no
wait/notify

— Level 1 provides a single mission with multiple
schedulable objects,

— Level 2 provides nested missions with (limited) nested
scopes

More worst case analysis friendly
Restricted subset of RTSJ



SCJ

Only RealtimeThreads are allowed
Notions of missions and handlers

{ | J-
Setup —X ¥ |nitialisation — Execution —— Termination —a— Teardown

No heap objects/ no GC

Restricted use of scopes e s e

Private
: _— e Memory  Private
eanioTy - Memory
Privat
Memory PEH 4
PEH 1 PEH PEH
PEH 2



Predictable Java (PJ)

Predictable Java intended as guidance/ideas for SCJ

JSR-302 uses inheritance for limitation
— Lots of @SCJAllowed annotations everywhere

RTSJ would be a specialisation of a smaller profile

PJ suggests to use inheritance for specialisation
— Generalisation of RTSJ

Missions are first-class handlers

— Scoped memory belonging to the mission
 No need for immortal memory known from RTSJ and SCJ.
e Simplifies memory hierarchy
e Programs are more Java like



Many variants of Java

J2EE

— J2SE & enterprise extensions / \
J2SE J2EE

N
\

— Standard Java

J2ME

— Subset of J2SE & additional
classes
RTSJ
— Add on to J2EE, J2SE, or J2ME
for realtime

SClava

— Subset of RTSJ, subset of J2SE,
& additional classes




Predicatble JVM

* JOP

— Java Optimized Processor
— JVM in Hardware (FPGA)

e HVM
— targeted at devices with 256 kB flash and 8kB of RAM
— Interpreted or AOT compilering
— 1st level interupt handlers in Java
— Runs on ATmega2560, CR16C, ARM7, ARM9 and x86

e JamaicaVM

— Industrial strength real-time JVM from Aicas
— Enroute for Certification for use in Airplanes and Cars



The HVYM

Java-to-C compiler with an embedded interpreter

File Edit Source Refactor Navigate Search Project Run Window Help

i @ [0 & o |® |5 [ & v e - T [&)ava
[£ Package Explorer 23\‘ = -@ TestUARTWriter.java E@\ =0
- TLINPUIT L LU.UARITAT LLE] ;|:| -~
B~

<~ =l KT4585javaApp public class TestUARTWriter {

~ [#Esrc
~ i main
= [J] TestUARTWriter.java
~ (@ TestUARTWriter
ain(string[]) : void
I =i JRE System Library [JavaSE-1.6]
P =lib
~ == KT4585Legacy
~ (= application

/:cx

* @param args

# @throws IOException

o |

- h‘pub‘lic static void [EFL(String[] args) throws IOException {
LED led = new LED();

UARTWriter writer = new UARTWriter();

WatchdogFreeze wdog = new WatchdogFreeze (8xFF5008);
wdog.set |= WatchdogFreeze.FRZ WDOG;

String tick = "Tick";

b = 480Datalink ! Problems | @ Javadoc |@> Declaration |,’ IAR Project - gcc_linux.ew |.h Icecap tools dependency E:é\\ =g

E S:siDSelfTest ~ Dependency Extent (40 elements) (output: fhome/sek/workspace_temp/KT4585Legacy/application/TestsC] i

b s DIRcaTitFal I (& devices.CR16C.KT4585.CR16CInterruptHandler (1)

b = Helloworld b & devices.CR16C.KT4585.DeviceRegShort (1)

b e Helloworldjava P @ devices.CR16C.KT4585.LED (3)

— P @ devices.CR16C.KT4585.Port (1)

b & Kt4585 I (& devices.CR16C.KT4585 WatchdogFreeze (1)

> @ TestsC) P @ devices.HWODbject (1)

P @ devices.InterruptHandler (3)
PimgEe ~ b @ devices.Svstem (1) |

nte main.TestUARTWriter.main(String[] ...ception : void - KT4585)avaApp/src I ” @ P =FE W S .

Java look-and-feel for low-end embedded devices
Support incremental move from C to Java



Features

Execution on the bare metal

First level interrupt handling & Hardware Objects
Hybrid execution style (interpretation + AOT)
Program specialization

* Classes & methods

* Interpreter

Native variable support

Portability

* No external dependencies

* Strict ANSI-C

Process switching & scoped memory

25



The Predictable Real-time HVM

 Time predictable implementations of
Interpreter loop and each bytecode

1 static int32 methodInterpreter (const
MethodInfox* method, int32x fp) {

2 unsigned char s*method_code:

3 int32x sp;

4 const MethodInfox methodInfo;

6 start: method_code = (unsigned char x)
pgn_read_pointer(&method—>code, unsigned
charxx) ;

7 sp = &fp[pgm_read_word(&method—>maxLocals)
+2];

8

9 loop: while (1) {

10 unsigned char code = pgm_read_byte

method_code ) ;

11 switch (code) {

12 case ICONST_O_OPCODE:

13 //ICONST X Java Bytecodes

14 case ICONST_5_0PCODE:

15 *sp++ = code — ICONST_O_OPCODE;

16 method_code—++;

17 continue ;

18 case FCONST_O_OPCODE:

19 //Remaining Java Bytecode impl...

20 }

21 }



What about Time Analysis?

Utilisation-Based Analysis

» A simple sufficient but not necessary
schedulability test exists

U

N

C.

Zi< N((2YN -1
ZTi ( )

i=1

U<069as N—>w
Where C is WCET and T is period

41

Response Time Equation
Ri =Ci + X [R—‘CJ

jehp (i)

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

w "
w't=C + L IC .
' ' jeth(i){T.—‘ J

J

The set of valuesw’, W, W’,..., W;,.. is monotonically non decreasing
Whenw =w'" the solution to the equation has been found, w;
must not be greater that R, (e.9.0orC,)

42

e Traditional approaches to
analysis of RT systems are hard
and conservative

e Very difficult to use with Java
because of JVM (and Object
Orientedness)



Model based Analysis

— TIMES
 Model based schedulability tool based on UPPAAL

— WCA
 WCET analysis for JOP
— SARTS
e Schedulability on JOP
— Tetal
e WOCET analysis for SW JVM on Commodity HW

— TetaSARTS
e Schedulability analysis for SW JVM on Commodity HW and JOP

28



SARTS

e Schedulability analyzer for real-time Java systems
— Assumes program in SCJ profile
— Assumes correct Loop bounds annotations
— Assumes code to be executed on JOP

 Generates Timed Automata
— Control flow graph with timing information
— Uppaal Model-checker checks for deadlock
— Based on ideas from TIMES tool

29



SARTS Overview

UPPAAL model

‘ Scheduler automaton

Periodic Handler automaton

|

v

Sporadic Handler automaton

!

‘ Java Program

SARTS

UPPAAL

nE

YES/NO

30




SARTS Overview

A scheduler automaton models FPS

« A controller automaton, periodic/sporadic, IS
created for each handler

« Each Java method results in a parametrised
automaton

— One clock per task/thread
— Pre-emption is modelled using stopwatches
— Control-transfer is modelled using synchronization

31



Java to UPPAAL

Java code UPPAAL model

protected boolean run() {
if (condition){
//then statements

WaitingForRelease

runftiD]?

} else { Ready
//else statements
}
return true; run[tiD]!
} [fThen IfElse

Return End

-@®

/29



Timed Automata templates

 Translation of Basic
Blocks into states and

transitions
joopBound =0 P o Patterns for:
I &, executionTime' == running[tiD] 3 LOOpS
" precstontie =0, | oo — Monitor statements
O — If statements
S — Method invoke

— Sporadic task release

33



Simple models of RM scheduler

 Predefined models
— Scheduler
— Periodic Task

-!i;?l\ ThreadID)schedulableli] @ exists(i:ThreadID)schedulablei] _ SpOrad |C TaSk

Time E=
P
A "
executionTim &
exe nTim ng[sched ID]

34



Periodic Task/Sporadic Task

offset I=( CheckForOffset

releasedTime <= offset

ReadyToBeFired r ReadyToBeScheduled

307 fire[sID]?
@) - i c
fireable[sID] = true \H schedulable[sID] = true S

fireable[sID] = false
releasedTime = 0

hreadPriority[p! selectedThreadPriority b
i i runScheduler()
7 ReadyToBeScheduled run[sID]!
schedulable[plD] = true &
releasedTime = 0
- ExecutingThread
threadPriority[pID] >= selectedT adPriority
runScheduler() n[pID]! releasedTime <= deadline

feadline

schedulable[sID] = false,
= deadline runScheduler()

dTime <= deadline
nipID] e o DONE

schedulable[plD] = false releasedTime minlA e
S 4

Fchediien) releasedTime = 0,

fireable[sID] = true

releasedTime <= minlA

¥ DONE

releasedTime <= period

35



SARTS sales pitch

 The schedulability question is “translated" to a
deadlock question

— no deadlock means schedulable

« Compared to traditional schedulability analysis
— Control flow sensitive
— Fine grained interleaving
— Less pessimism
— Fully automatic

36



SARTS can do better than utilisation test

« Example
* One periodic task

e Two sporadic tasks

_ Mutually exclusive public class Experiment2 extends PeriodicThread {

public boolean run() {
if (b) {
RealtimeSystem.fire(1);
} else {
RealtimeSystem.fire(2);
}

return true;

}
}

37



SARTS can do better than utilisation test

Period: 240

Minimum inter-arrival time: 240
Periodic cost: 161

Sporadic cost: 64

Utilisation test fails:

161 64 64
(m) + (m) -+ (m) — 1.20

38



Time Line

Process
Sporadic 1
T I | | | 1
0 240 480

39



Tetal

WCET analysis tool

— taking Java portability into account
Analysis at method level
Can be used interactively

Takes VM into account JBC Model Layer

Takes HW into account y

WM Model Layer

I

Hardware Model Layer

40



Initialisation Model

Initial Execute Main_Done

nvoxke main! -rOT‘ﬁ:,"': main? PO“:'I

|nirnarhse()r

Terminate

Program Model

Idie Execute

BasicBlockBegin_ID0 Execuwe ALOAD 0 Execute INVOKEVIRTUAL

() Fan Y )
' jvm_instruction = JVM_ALOAD 0 jvm instruction = VM_INVOKEVIRTUAL _
. CbWaiUorﬁm@thodB
Return BasicBlockEnd ID0 Execute IRETURN
o~ ©-~ ©- C
C/ & &

jvm_instruction = JVM_IRETURN

JVM Model (excerpt)

rehem [LOAD implomantation?
.{' }El:el:!.lE_ILCI.AD

Poss-proce ssing e PRE-processing Analyse_JHC
:"\. i o /E’\ L
imroka_post processjbol retum_post_process jba? T _amgecuta’ neoka_pro proocss, jbol when_pro process jbo?

Execue_ISTORE

nehusm B IR HE T e

41



Java Bytecode Implementation

Executing

e
dle =L}

nvoke_assembly _handlelSTORE?

assembly_esxecute!
assembly_instruction = ASSEMBLY_PUSH

assembly_execute!
assembly_nstruction = ASSEMBLY_PUSH

BasicBlockBegin_ID0

ASSEMBLY_push_IDO_D

ASSEMBLY _push_ID0_1

(C Returmn

(:C BasicBlockEnd_ID0

retumn_assembly_handlelSTORE

SSEMBLY ret D0 2
o

1

assembly_execuie!

assembly_mnstruction = ASSEMBLY_RET

Hardware Models (From METAMOC)

fatch_done

main_dona?

executal
move(THIS, NEXT)

X==1

axecuta?

ii—,]wmu' X <= wait
clear(THIS)
X == walit

42



¢

Fenodic Task

TetaSARTS

Scheduler Model

ﬁ_l

Controller Model ) (

i

) Periodic Task ) Sporadic Task
| Controller Model

Controller Model
\, J

A

v

LN

~,

A

Vi Y Y
™) a
Feriadic Task FPeriodic Task Sporadic Task
Model Model Model
s A
Java Bytecode Model Layer

i
V

.‘
|

T

JVM Model Layer

v

Hardware Model Layer




Minepump example

44



Minepump example
Write once — run whereever possible

Execution Environment Water Deadline  Methane Deadline  Schedulable
HVM + AVR @ 10 MHz 12 ms 12 ms v
HVM + AVR @ 5 MHz 12 ms 12 ms X
HVM + AVR @ 10 MHz 6 ms 6 ms X
JOP @ 100 MHz 6 ms 6 ms v
JOP @ 100 MHz 12 ps 12 ps v

Table 2. Using TetaSARTS with various execution environments.

Experiment Exec. Env. Optimised Analysis Time Mem. Usage
Minepump HVM + AVR v 15h 25m 16s 17933 MB
Minepump JOP v 7s 27 MB
Minepump JOP P 6m 18s 62 MB
SARTS Minepump JOP N/A 21s 42 MB
Simple System HVM + AVR v 49s 168 MB
Simple System HVM + AVR P 22m 58s 238 MB
Simple System JOP v 0.05s 7 MB
Simple System JOP P 0.5s 20 MB

Table 1. Results obtained using TetaSARTS and SARTS.

45



Energy Optimize Applications

Execution Environment Clock Freq. Schedulable
HVM + AVR 10 MHz v
HVM + AVR 5 MHz X
JOP 2 MHz v
JOP | MHz X
System Clock Freq. Proc. Util. Proc. Idle
RTSM 100 MHz 48.5 s 4.0 ms
RTSM 60 MHz 80.8 s 4.0 ms
Minepump 100 MHz 23.9 us 2.0 ms

Minepump 10 MHz 259 pus [1.8 ms




Compositional Verification

TetaSARTS generates model for whole program
Library routines analysed again and again
Models based on control flow can be complicated

ldea: Annotate interfaces with abstract
description of behaviour

— Time and Resource Specification Language (TRSL)

— Could have been any of a range of spec. lang.
e UML/Marte, ACSR, TADL

47



class Task?Z extends PeriodicEventHandler|

Buffer buf; // shared buffer
//@ TRSL = [5]
private int calculate(){..}
//@ TRSL = [2]
private void prepare(..){..}
//@ TRSL = [1]
private void register(..){..}
//@ TRSL = [1 ; 7?2 ; using(xr)[2] ; 1 ]
public void handleEwvent () {
if (! ready) { // wecet: 1
value = calculate(); // wecet: 5
prepare (value); // weet: 2
!
input = buf.remove(); // wcet: 2
register (input); // wecet: 1

}

Note — could have used [ 1..8 ; using(r)[2] ; 1] since
[1;77?;using(r)[2];1] < [1..8; using(r)[2]; 1]



TetaSARTS+

e Schedulability analysis now in three steps

— Verify that implementation is simulated by
specification
e Check L(Implementation) < L(specification)

e Possible since TRSL TAs are simple instances of the
Event-Clock Automata

— Generate TAs from Specs
— Use TetaSARTS



Further Analysis and tools

Scope compliance analysis for SCJ
SCJ compliance analyzer
Eclipse plug-in

Lot’s of work on (analyzable) Real-time GC



Future Work

Experiment with deductive verification

— Functional requirements
— JML and Key
— Especially loop bounds

Symbolic model checking
— JavaPathFinder

Termination Analysis
— Recursion bounds

Analyse non-SCJ programs
— Java, Groovy, Scala

Multi-core HVM



Learn more

Model-based schedulability analysis of safety critical hard real-time
java programs

— T. Bggholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. G. Larsen

— JTRES 2008

Schedulablility Analysis Abstractions for Safety Critical Java
— Thomas Bggholm, Bent Thomsen, Kim G. Larsen, Alan Mycroft
— ISORC 2012

Wocet analysis of java bytecode featuring common execution
environments

— C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen
— JTRES 2011

TetaSARTS: A Tool for Modular Timing Analysis of Safety Critical

Java Systems

— Kasper Luckow, Thomas Bggholm, Bent Thomsen, and Kim Larsen
— To appear JTRES 2013

52



Join InfinlT network on High Level
Languages in Embedded Systems

o http://www.Infinit.o

k/dk/interesseqgrupper/hoejniv

eau_sprog til ind

ejrede systemer/hoejniveau

sprog_til_indle

rec

e systemer.htm

53



Try It out?

TetaSARTS
— http://people.cs.aau.dk/~luckow/tetasarts/

Hardware Near Virtual Machine
— http://icelab.dk/

0SCJ (open Safety-Critical Java Implementation)
— http://sss.cs.purdue.edu/projects/oscy/

Java Optimized Processor
— http://www.|opdesign.com/

JamaicaVM
— http://www.aicas.com/jJamaica.html £




Joint work with:

Allan Mycroft
— Cambridge University

Hans Sgndergaard, Stephan Korsholm
— Via University College

Thomas Bggholm, Kasper Sge Luckow, Anders P. Ravn,
Kim G. Larsen, Rene R. Hansen and Lone Leth
Thomsen

— CISS/Department of Computer Science, Aalborg University

55



