Java: Past, Present, and Future

Brian Goetz
Java Language Architect
Oracle Corporation

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract.

It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

PAST

Background to Java

* The programming landscape in 1992-1995...
— Fortran was dominant for scientific computing
— C dominated just about everything else
— Pascal on the wane
— Perl used for small stuff
— Niche enclaves of SmallTalk and Lisp

e Basically, all C, all the time

Background to Java

e But C sucked!

— ...at least for applications

— Too low-level

— Pervasive memory management tax
— Portable, but not portable

— Too hard to reuse code

* Most people wanted something better

— But we were already struggling against “Yeah, but
C runs everywhere”

Background to Java

* The hype landscape in 1992-1995...

— Object-orientation
e C++ not quite yet real
* Design Patterns rising in the hype-o-sphere

— Distributed Objects
« CORBA (Object Management Group)
* DOE (Sun)
e DCE (Open Group)
— The Web Will Change Everything
* OK, this one really happened

Java, as self-described in 1995

* “A blue-collar language”
— Opposite of “ivory tower”

 “Asimple, object oriented, distributed,
@rpre@robust, secure, architecture-
neutral, portable, high performance,

mulﬁthreaded,@mic Iangua@

— OK, some hype here too

Static or Dynamic?

boolean 1 ic;

float howD

Map<Axis, Float> howDynamic;

enum Axis {
TYPING,
COMPILATION,
DISPATCH,
INTROSPECTION,
LINKAGE,
LOADING AND UNLOADING,

Static ... and Dynamic

Statically typed ... and dynamically too
Statically compiled ... and dynamically too

Static method overload resolution

— But dynamically linked

— ...and verified

— ...with dynamic enforcement of accessibility

Dynamic dispatch on receiver
— Static dispatch on arguments

Dynamic introspection (reflection)
Dynamic loading and unloading

Radical ... And Conservative

* An odd-seeming combination of risky and conservative

 Many features not yet proven in industrial languages

— Garbage collection, Bytecode, JIT
e Concepts well understood but performance not yet there

— Dynamic linkage, loading, introspection
— Integrated thread support

— Cross-platform memory model!

— Hybrid inheritance model

— Unicode

— Serialization (hey, can’t get ‘em all right)

Radical ... And Conservative

e Fanatical about safety
— No programmer access to pointers (!)
— Runtime checks for nulls, array bounds
— Runtime verification

* On the other hand, eschewed lots of features
because of “complexity”
— Operator overloading, macros, typedef, struct,

union, enum, function pointers, multiple
inheritance, automatic coercions

Method or Madness?

 We've got a grab bag of risky stuff from
academic languages, and YAGNI-ism

— At the same time, claiming “blue-collar language”
— Was this just a random walk through the design
space?
* Notice...

— The risky stuff is mostly in the VM
— The YAGNI stuff is mostly in the language

A Wolf in Sheep’s Clothing

“It was clear from talking to customers that they
all needed GC, JIT, dynamic linkage, threading,
etc, but these things always came wrapped in
languages that scared them.”

— James Gosling (private communication)

Step 3 ... Profits!

* Afew initial targeting mis-steps
— Initially aimed at set-top boxes (oops)
— Then, rotated to the client (oops)
— Then rotated to the server — success!

* Credit the wolf
— Fast GCand JIT
— Reliable concurrency
— Safety
— Dynamic linkage, loading, introspection

PRESENT

Java Today

 The worlds most popular programming
language
 The worlds most popular deployment platform

— On 97% of enterprise desktops
— On 3+ billion devices

A community of over 9M developers

If Java Were A Country

Population oM
GDP USD 2008 (?)

Design Tensions

* Reasons to change
— Adapting to change
e Changing hardware, attitudes, fashions, problems, demographics
— Righting what’s wrong
* Inconsistencies, holes, poor user experience

* Reasons not to change
— Maintaining compatibility
* Low tolerance for change that will break anything
— Preserving the core

e Can’t alienate user base in quest for “something better”

* Easy to focus on cool new stuff, but there’s lots of cool old stuff
too

Core Language Principles

* Reading code is more important than writing
code

* Simplicity matters
* One language, the same everywhere

Background to Java 8

* Developers have more choices in
programming languages
— Even without leaving the JVM

* Need to keep up with rising developer
productivity expectations

* Need to offer a simpler programming model
for data parallelism

— While still being Java

Java 8

e Java SE 8 adds a small number of new features

— Lambda expressions (and method references)
* With a healthy dose of type inference

— Default (and static) methods in interfaces
— java.util.stream package for aggregate / data-
parallel operations

 ..that will have a big impact on developer
productivity

Lambda Expressions

* Alambda expression is an anonymous method
— Enables behavior to be manipulated as data

* Lambda expressions in the language...
— ...enable more powerful libraries

— ...enabling more expressive, more readable, less
error-prone use code

— ...boosting developer productivity

* Also, key to an accessible parallelism strategy

Lambda Expressions

interface Predicate<T> {
boolean test (T t);

}

class Collections {
public static<T> void removeAll (Collection<T> c,

Predicate<T> p) { .. }

Collections.removelAll (people,
new Predicate<Person>() {
public boolean test (Person p) ({
return p.getAge() > 18;
}
}) g

Lambda Expressions

interface Predicate<T> {
boolean test (T t);

}

class Collections {
public static<T> void removeAll (Collection<T> c,

Predicate<T> p) { ..

Collections.removelAll (people, p -> p.getAge() > 18);

}

Aggregate Operations

List<Person> people = ...

int heaviestGuy =
people.parallelStream/()
.filter(p -> p.getGender () == MALE)
.mapToInt(p -> p.getWeight())
.max () ;

Brief Inspiration Break

-Parallel Computation Tree

What sort of code
should we write

to get a computation
tree of this shape?

+
What sort of code E 4 \
would we like '
to write?
N
+/ \+ .
+
/ /" N\ /

X(1) X(2) X(3) X(4) - X(999999) X(1000000)

14

Aggregate Operations

List<Person> people = Retrofitted Collections for

self-decomposition via

int heaviestGuy = Spliterator abstraction

people.parallelStream
ilter(p -> p.getGender () == MALE)
: :getWeight)

Stream operations generic
relative to Spliterator

Entire pipeline fused into
single parallel pass

Source characteristics (sized-
ness, distinct-ness, sorted-

ness) used to optimize
execution

Aggregate Operations

 QOperates on data set, not
individual elements

* What, not how

* Code reads like the
problem statement

List<Seller> sorted = new ArrayList<>(glellerd); ° Doesn’t leak extraneous
Collections.sort(sorted, new Comparatgr<Groug>() { details

Set<Seller> sellers = new HashSet<>();
for (Txn t : txns) {
if (t.getBuyer () .getAge() >= 65)
sellers.add(t.getSeller()) ;s

public int compare(Seller a, Selfer b) ({ .
return a.getName () .compareTp (b.getNane()) ; VVe“factoreq
} * Free parallelism!

})

for (Seller s : sorted)
System.out.println(s.getNaye()) ;

e Or...

txns.stfeam()
.filter(t -> t.getBuyer () .getAge() >= 65)
.map (Txn: :getSeller)
.distinct()
.sort (comparing (Seller: :getName))
.forEach(s -> System.out.println(s.getName())

Another Wolf In Sheep’s Clothing

* Lambda expressions look like “just another
language feature”

— But really, Java has taken a gentle turn for the
functional

— A gentle push away from mutative / imperative
— While still being Java

* Will have a huge impact on APl design

— Which in turn will improve how people program

Default Methods

e Javais a victim of its own success
— Our Collections APIs are 15+ years old!

* Can’t compatibly evolve interface-based APIs

— Perverse result: adding lambdas to the language
makes Collections look even older!

— But replacing Collections would take years

e What we need is: interface evolution

Default Methods

 Add a new method to an interface
— With a default implementation

— Fully virtual, leaves APl owners in control of their
APIs

— This is how we added the stream() method

interface Collection<T> extends Iterable<T> {

default Stream<E> stream() {
return StreamSupport.stream(spliterator (), false);

}

Java SE 8

 Afew new features
— Lambdas (and method refs)
— Default (and static) methods in interfaces

— Possibly-parallel stream operations on Collections
(and arrays, and anything else you want)

* Which will change the way 9M people
program

FUTURE

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract.

It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Are We Done?

e Java SE 8 is a big step forward, is there more?

— Still lots of pain points
* Boxing
* Tuples, records, multiple-return
* Erasure

Where's List<int> ?

Pointer chasing

Array problems
— 32 bit limitation, mutability, sparseness, heterogeneity
— No deterministic inlining
— And some new execution targets
* GPUs, FPGAs

What's Next?

Underlying most of these is ... object identity

Java’s type system gives us:

— A fixed set of primitive value types

— Arrays —homogeneous aggregation

— Classes — heterogeneous aggregation
Nice things about primitive types

— No identity

— No object header

— No indirection

— Can store in registers

— Can push on stack

... But we can’t make new ones

Value Types

* Our next big target is value types
— Like classes, but without identity
— No header, store fields in registers/stack

* Key enabler for

— Tuples, records
— User-defined primitive types
e Can be packed efficiently into arrays, inlined into objects

— Generification over primitives

VM first, then language

Summary

* Lots of people thought Java was “done for” as
recently as a few years ago

 Demonstrated that significant modernization
is possible without compromising
compatibility or principles!

 And we’re going to keep on doing that

Thank You

Brian Goetz
Java Language Architect
Oracle Corporation

