What goes wrong when
thousands of engineers
share the same continuous

* bui]?

Eran Messeri, Google
eranm@google.com

Goals

e Demonstrate feasibility of working from
head

e Prove the importance of reliable, automated
tests.

e Show how complex engineering tasks can be
achieved with robust, basic tools.

e Convince you that releases doesn’t have to be
painful

Background

Over 15,000 engineers in over 40 offices
4,000+ projects under active development
5500+ code submissions per day (20+ p/m)
Over 75M test cases run daily

50% of code changes monthly

Single source tree

| DevInfra eng| << |Google eng|

Overview of dev. practices

e Single, searchable repository

e Each change requires a code review
(ownership, readability)

e Unified build system (local/cloud).

e Continuous integration with presubmit
capabilities.

e Single repository for test results (semi-
structured).

e Integration testing

Developer worktlow

Check-out code

Hack hack hack

Build, test

... more hacking

... more building and testing
Code out for review

Code committed

Pushed to production

Developer worktlow

Check-out code => Optimize with FUSE
Hack hack hack => IDE support

Build, test => In the cloud

... more hacking

... more building and testing

Code out for review => Standardized tool
Code committed => Triggers post-submit
Pushed to production => Pick a green CL

Common scenarios

Catching up with head

Somebody else breaking your build
Working with open-source & external code
Good citizenship: codebase clean-up
Pushing to production

Catching up with head

A simple matter of synchronizing...

e This is where merge happens (always
rebasing)

e (Cached build artifacts from the cloud.

e FUSE makes this fast

In practice, not very exciting..

Somebody broke your build

e Early detection mechanisms available (global
presubmit)

e Have they announced the change?
o Procedure for breaking changes
e Are your tests stable?
e (Cultural commitment to keeping things

green.

o Short time window for fixing
o Rollback if not feasible
o No hard definitions

Working with external code

e Easy process for importing external open-
source code.
o Incl. open-source review

e Exactly one version of each library
o No exceptions!

e “Public spaces” - shared maintenance
burden.
o Yes, it's expensive

e Tools exist for open-source development

Codebase clean-ups

e Pre-requirements: good tools

e What will break if I change X?

e No need for individual project approval
(global review)

e Tests transform fear to boredom

Appreciate and acknowledge such efforts

Pushing to production

e Code approved, submitted

e Post-submit triggers, test affected code.

e Good mix of small, medium and end-to-end
tests.

e Separate method for bringing up systems in
isolation.

e Easy deployment Ul.

Release 1n hours instead of weeks

What we (think) we got right

Getting started on the codebase
New “checkout” and build.
Effortless testing.

Navigating around the code
“Did that ever work?”

What doesn’t work?

e Code change turn-around time: Bandwidth
vs. change size

e (Cost of test creation & maintenance

o Mocks at different levels (class, module, system)
o Creating hermetic tests is hard
o Sometimes need specialists

e Resources consumption
e Churn - external and internal

Beyond the basics...

Stack-trace analysis of failing tests
Overcoming infrastructure failures
Automated detection of dead code.
Flakiness detection

Summary

e Collaborating over one source tree is
possible, but non-trivial.

e Basic CI tools are hard to build at such a
scale.

e Reliable automated tests will make your
release easy.

e Nothing can replace good eng. citizenship.

Questions?

Additional resources

Talks:

“Continuous integration at Google Scale”

“Development at the Speed and Scale of
Google”

“Tools for Continuous Integration at Google
Scale”

Blog: Google Eng Tools blog

http://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/Continuous%20Integration%20at%20Google%20Scale.pdf
http://www.infoq.com/presentations/Development-at-Google
http://www.infoq.com/presentations/Development-at-Google
http://www.infoq.com/presentations/Development-at-Google
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
http://google-engtools.blogspot.co.uk/

