
What goes wrong when
thousands of engineers

share the same continuous
build?

Eran Messeri, Google
eranm@google.com

Goals
● Demonstrate feasibility of working from

head
● Prove the importance of reliable, automated

tests.
● Show how complex engineering tasks can be

achieved with robust, basic tools.
● Convince you that releases doesn’t have to be

painful

Background
● Over 15,000 engineers in over 40 offices
● 4,000+ projects under active development
● 5500+ code submissions per day (20+ p/m)
● Over 75M test cases run daily
● 50% of code changes monthly
● Single source tree
● |DevInfra eng| << |Google eng|

Overview of dev. practices
● Single, searchable repository
● Each change requires a code review

(ownership, readability)
● Unified build system (local/cloud).
● Continuous integration with presubmit

capabilities.
● Single repository for test results (semi-

structured).
● Integration testing

Developer workflow
● Check-out code
● Hack hack hack
● Build, test
● … more hacking
● … more building and testing
● Code out for review
● Code committed
● Pushed to production

Developer workflow
● Check-out code => Optimize with FUSE
● Hack hack hack => IDE support
● Build, test => In the cloud
● … more hacking
● … more building and testing
● Code out for review => Standardized tool
● Code committed => Triggers post-submit
● Pushed to production => Pick a green CL

Common scenarios
● Catching up with head
● Somebody else breaking your build
● Working with open-source & external code
● Good citizenship: codebase clean-up
● Pushing to production

Catching up with head
A simple matter of synchronizing…

● This is where merge happens (always
rebasing)

● Cached build artifacts from the cloud.
● FUSE makes this fast

In practice, not very exciting..

Somebody broke your build
● Early detection mechanisms available (global

presubmit)
● Have they announced the change?

○ Procedure for breaking changes
● Are your tests stable?
● Cultural commitment to keeping things

green.
○ Short time window for fixing
○ Rollback if not feasible
○ No hard definitions

Working with external code
● Easy process for importing external open-

source code.
○ Incl. open-source review

● Exactly one version of each library
○ No exceptions!

● “Public spaces” - shared maintenance
burden.
○ Yes, it’s expensive

● Tools exist for open-source development

Codebase clean-ups
● Pre-requirements: good tools
● What will break if I change X?
● No need for individual project approval

(global review)
● Tests transform fear to boredom

Appreciate and acknowledge such efforts

Pushing to production
● Code approved, submitted
● Post-submit triggers, test affected code.
● Good mix of small, medium and end-to-end

tests.
● Separate method for bringing up systems in

isolation.
● Easy deployment UI.

Release in hours instead of weeks

What we (think) we got right
● Getting started on the codebase
● New “checkout” and build.
● Effortless testing.
● Navigating around the code
● “Did that ever work?”

What doesn’t work?
● Code change turn-around time: Bandwidth

vs. change size
● Cost of test creation & maintenance

○ Mocks at different levels (class, module, system)
○ Creating hermetic tests is hard
○ Sometimes need specialists

● Resources consumption
● Churn - external and internal

Beyond the basics...
● Stack-trace analysis of failing tests
● Overcoming infrastructure failures
● Automated detection of dead code.
● Flakiness detection

Summary
● Collaborating over one source tree is

possible, but non-trivial.
● Basic CI tools are hard to build at such a

scale.
● Reliable automated tests will make your

release easy.
● Nothing can replace good eng. citizenship.

Questions?

Additional resources
Talks:
“Continuous integration at Google Scale”
“Development at the Speed and Scale of
Google”
“Tools for Continuous Integration at Google
Scale”

Blog: Google Eng Tools blog

http://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/Continuous%20Integration%20at%20Google%20Scale.pdf
http://www.infoq.com/presentations/Development-at-Google
http://www.infoq.com/presentations/Development-at-Google
http://www.infoq.com/presentations/Development-at-Google
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
http://google-engtools.blogspot.co.uk/

