
© 2013 IBM Corporation 

How to not Lose Your Hair Doing  
Distributed Java Development… 

Scott Rich 
Distinguished Engineer, IBM Rational  
srich@ch.ibm.com 



© 2013 IBM Corporation 

Rational Development – A Growing, Global Team 

Canada – 483 (22%) 

Israel – 81 (4%) 

China – 154 (7%) 
Japan – 13 (1%) France – 69 (3%) 

United States – 884 (41%) 

India – 296 (13%) 

Switzerland – 6 (<1%) 

Mexico – 56 (3%) 

Brazil – 4 (<1%) 

Poland – 3 (<1%) 

Australia– 11 (1%) 

Sweden – 28 (1%) 
UK – 76 (4%) 

Russia – 13 (1%) 

Taiwan – 12 (1%) 

Software Lifecycle 
Management 

Rational (2002)  
Team-based, end-to-end 
development tools 
Information Lab (2003)  
Development tool technology 
Systemcorp (2004) 
Project portfolio mgmt 

BuildForge (2006) 
Product development doc 
Telelogic (2008) 
Embedded systems dev 
Green Hat (2012)  
Quality management 
UrbanCode (2013)  
DevOps 

2 



© 2013 IBM Corporation 3 



© 2013 IBM Corporation 

Accelerating Delivery in Rational’s CLM Team 

4 

JazzHub 

2001   2002   2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   Future 
Continuous Delivery 

Annual releases 

On-Premise Installs CloudFirst 

Agile DevOps 

Rational Team Concert 

Rational Quality Manager 

Rational Requirements Composer 

Agile ALM (CLM) 

UrbanCode Deploy 

UrbanCode Release 

UrbanCode Build 

Tools for collaboration 

Open Source Development 

eclipse.org jazz.net jazz.net/devops 

Communities for collaboration 

Open Commercial Development Continuous Delivery Story 

Publish 
milestone 
and GA 
builds 

Sandbox 
trials 

Paid 
hosted 
private 
projects 

Free 
hosted 
public 

projects 

jazz.net/downloads jazz.net/sandbox hub.jazz.net 

Developer-to-developer engagement 



© 2013 IBM Corporation 

tl;dr: this stuff is hard, most of the practices are not Java-specific 

 We’re nearly ten years into this, and we know we’ve got a long way 
to go 

 We have been able to eliminate a lot of our pain points 

 Most of our practices are general: collaboration, awareness, team 
structure 

 But there are some Java-specific practices which we think are 
important 

5 



© 2013 IBM Corporation 

Seven Years Ago: Our Pain Points… 
 joining a team  
 get my environment configured to be productive 
 what is happening in my team 
 collecting progress status 
 following the team’s process 
 ad hoc collaboration/sharing of changes 
 starting an ad hoc team 

 is the fix in the build? 
 run a personal build  
 tracking a broken build 
 why is this change in the build? 
 reconstructing a context for a bug/build failure 

 interrupting development due to a high priority bug fix 
 working on multiple releases concurrently 
 tracking the code review of a fix 
 referencing team artifacts in discussions 
 how healthy is a component? 
 collecting project data/metrics? 
 keeping plans up to date 

Boring and painful 

Team 
awareness 

Build 
awareness 

Project 
awareness 



© 2013 IBM Corporation 

Way of Working: Team Centric 

7 

Members 

Build 

Release/ 
Iteration Plan 

Work Categories 

Streams 

Dashboard 

Events 

has 

produces 

defines 
generates 

delivers 

is responsible 

monitors 

Process 

Team 

follows 
owns 

Teams are self-tuned but share a common rhythm 



© 2013 IBM Corporation 8 

Scaling up: Teams of Teams 

8 

Process Repository 

Jazz  
Development 

Changes 



© 2013 IBM Corporation 

Culture – Team Organization – Feature Teams 

  Feature teams are virtual teams responsible for delivering a feature as specified in a plan item 

  Feature teams may span components/capabilities and applications 

  Each affected component/capability/test team must have a representative on the feature team 

  Each feature team has a feature team lead and a senior leader from the CLM Project 
Management Committee (PMC) who owns the plan item 

  Each feature team has its own scrum 

Change and Configuration Management Quality Management Requirements 
Management 

Jazz Team Server 
(Jazz Foundation) 

W
eb

 U
I 

R
ep

os
ito

ry
 

P
ro

ce
ss

 

R
ep

or
tin

g 

Li
fe

cy
cl

e 
P

ro
je

ct
 A

dm
in

 

W
or

k 
ite

m
s 

P
la

nn
in

g 

B
ui

ld
 

S
ou

rc
e 

C
on

tro
l 

E
cl

ip
se

 C
lie

nt
 

Vi
su

al
 S

tu
di

o 
C

lie
nt

 

W
in

do
w

s 
S

he
ll 

D
as

hb
oa

rd
s 

C
om

m
on

 C
om

po
ne

nt
s 

La
b 

M
an

ag
em

en
t 

Te
st

 E
xe

cu
tio

n 

Te
st

 P
la

nn
in

g 

S
er

ve
r 

W
eb

 U
I 

R
ic

h 
C

lie
nt

 

In
te

gr
at

io
ns

 

E
nt

er
pr

is
e 

E
xt

en
si

on
s 

New Feature New Feature 

New Feature 

New Feature 



© 2013 IBM Corporation 

Culture – Team Organization – Run Teams 

  Run teams are permanent virtual sub-teams that handle critical, daily tasks for a component: 
– Fix bugs (in existing features) 
– Answer questions on the jazz.net forums 
– Work with Level 3 support team on customer escalations 
– Maintain SCM streams, monitor continuous builds, and manage deployments for testing 
– Monitor work items inbox, triage work items, prioritize and plan work 

  Members of a component team rotate through the run team 

  Run team has its own scrum 

  Benefits 
– Team acquired knowledge and expertise by working/fixing defects across all areas 
– Feature teams are free to focus on new features 
–  Increased quality 
–  Improved interaction with the support team and improved responsive to customers 

Application Team 
Component Team 

Run Team Feature Team Feature Team 



© 2013 IBM Corporation 11 

Our Current Practices 

11 

milestones 
first 

API 
first 

end 
game 

retrospectives 

always have 
a client 

continuous 
integration 

community  
involvement 

new &  
noteworthy 

adaptive 
planning 

continuous  
testing 

consume your 
own output 

component 
centric 

drive with  
open eyes 

validate 

reduce stress 

learn 

enable 

attract  
to latest 

transparency 

validate 
update 

dynamic  
teams 

show progress 

enable 

explore 

validate 

live 
betas 

feedback 

sign 
off 

End of iteration 
demos/reviews 

Ranked 
Product Backlog 

Burndown Stories 

Daily Standup 
Adoptions 
Expectations 

PMC 
Buddy Review 

Rules of the 
Road 

Feature  
teams 



© 2013 IBM Corporation 12 

Rational Team Concert:  An Overview 

SCM 
 Integrated stream management 

 Component level baselines 
 Server-based sandboxes 

 Identifies component in streams 
and available baselines 

 SVN, Git, CC bridge, connector 

Build 
 Work item and change  

set traceability 
 Build definitions for team  

and private builds 
 Local or remote build servers 
 Supports Ant and command  

line tools 
 Integration with Build Forge 

Work Items 
 Defects, enhancements  

and conversations 
 View and share query results 
 Support for approvals and 

discussions 
 Query editor interface 
 ClearQuest bridge, connector 

Agile Planning 
 Integrated release/iteration planning 
 Effort estimation & progress tracking taskboards  
 Out of the box agile process templates 

Project Transparency 
 Customizable web based dashboards 
 Real time metrics and reports 
 Project milestone tracking and status 

 Single structure for project related artifacts 
 World-class team on-boarding / offboarding 

including team membership, sub-teams and 
project inheritance 

 Role-based operational control for flexible 
definition of process and capabilities 

Jazz Team Server 
 Team advisor for defining / refining “rules”  

and enabling continuous improvement 
 Process enactment and enforcement 
 In-context collaboration enables team members 

to communicate in context of their work 



© 2013 IBM Corporation 13 



© 2013 IBM Corporation 

 Aligned milestone schedule across products 

Team rhythm and timeline are made explicit 



© 2013 IBM Corporation 

Team awareness: What’s the plan? 

15 



© 2013 IBM Corporation 16 



© 2013 IBM Corporation 17 



© 2013 IBM Corporation 18 



© 2013 IBM Corporation 

What about those Java-specific practices? 

 Continuous Integration with RTC and Jenkins 

 Getting our test layers right, implementing mocking 

 Using components to increase autonomy 

 Enabling desktop test and debug for complex systems 

19 



© 2013 IBM Corporation 

Continuous Integration with RTC and Jenkins 

  We perform ~1000 builds per week 
– Components run continuous builds 
– Nightly Integration candidates 
– Weekly Integration builds – “stop the line” 
– Monthly Milestone builds 

  Make it easy to run personal builds 
and builds for Feature Teams 

  Build time is a constant focus 
– Test refactoring 
– Kicking out Integration tests 
–  Increasing parallelization 
– 12 hours to 8 for full re-build 
– 10->3 hrs for average build 

20 

0 
200 
400 
600 
800 

1000 
1200 
1400 

05
/2

0 
to

 0
5/

26
 

05
/0

6 
to

 0
5/

12
 

04
/2

2 
to

 0
4/

28
 

04
/0

8 
to

 0
4/

14
 

03
/2

5 
to

 0
3/

31
 

03
/1

1 
to

 0
3/

17
 

02
/2

5 
to

 0
3/

03
 

02
/1

1 
to

 0
2/

17
 

01
/2

8 
to

 0
2/

03
 

01
/1

4 
to

 0
1/

20
 

12
/3

1 
to

 0
1/

06
 

12
/1

7 
to

 1
2/

23
 

12
/0

3 
to

 1
2/

09
 

11
/1

9 
to

 1
1/

25
 

11
/0

5 
to

 1
1/

11
 

10
/2

2 
to

 1
0/

28
 

10
/1

0 
to

 1
0/

15
 

Builds 

Builds 

0 
50 

100 
150 
200 
250 
300 

05
/2

0 
to

 0
5/

26
 

05
/0

6 
to

 0
5/

12
 

4/
22

 to
 4

/2
8 

04
/0

8 
to

 0
4/

14
 

03
/2

5 
to

 0
3/

31
 

03
/1

1 
to

 3
/1

7 
02

/2
5 

to
 0

3/
03

 
02

/1
1 

to
 0

2/
17

 
01

/2
8 

to
 0

2/
03

 
01

/1
4 

to
 0

1/
20

 
12

/3
1 

to
 0

1/
06

 
12

/1
7 

to
 1

2/
23

 
12

/0
3 

to
 1

2/
09

 
11

/1
9 

to
 1

1/
25

 
11

/0
5 

to
 1

1/
11

 
10

/2
2 

to
 1

0/
28

 
10

/1
0 

to
 1

0/
15

 

Build time(min) 

Build time(min) 



© 2013 IBM Corporation 21 



© 2013 IBM Corporation 22 

Information Radiators: Wallboards 

Gummy bears 



© 2013 IBM Corporation 

Culture – Continuous Testing 

  Build quality in with testing by everyone, everywhere, all the time 
–  Instill the mindset throughout the team that quality and testing is everyone’s responsibility 
– Avoid throwing untested code “over the wall” to the next team to test 

  Automate as much testing as possible to increase confidence in builds 
– Some teams wrote JUnits from the beginning 

•  Jazz Foundation – 55,000 Junits 
•  Rational Team Concert – 18,000 JUnits 

– Other teams started later but have made good progress 
•  Rational Quality Manager – 2,000 JUnits 
•  Rational Requirements Composer – 2,000 Junits 

– Use tests in the pipeline to test application, product, and integration functions 
•  CLM Build Verification Test (BVT) 
•  Integration tests 
•  Performance acceptance tests 

Develop Automated Test Manual Test Build Production 

Shift testing upstream 



© 2013 IBM Corporation 

Java-specific practices: layered testing 

Slide from Jan 

24 



© 2013 IBM Corporation 

Java-specific practices: component-based development 

“Good fences make good neighbors.”!

25 



© 2013 IBM Corporation 

Java-specific practices: desktop dev/testing of complex Systems 

So how does a developer debug and test a Java EE beast? 

- Our runtime topology relies on a relational DB, Java EE app server, user 
registry, etc. 

Development-time profile uses lightweight components 

-  Jetty application container hosts our bundles 

- Derby database 

-  Shared Eclipse launch configs for dev-time servers 

-  Version-controlled target platforms contain server pre-reqs 

26 



© 2013 IBM Corporation 

Ra#onal	
  
Jazz	
  Build	
  

Ra#onal	
  
Collabora#ve	
  
Lifecycle	
  
Management	
  

Selenium	
  

InfoSphere	
  
Op#m	
  
Managed	
  
DataCenter	
  

•  Long static pipeline 

•  Limited automation 

•  Inconsistent deployment mechanisms 
•  Deployments driven by schedule and not by results 

We are here: CLM Continuous Delivery Pipeline 

27 

Develop Build (multiple per day) Test (daily) 

Function 
Test 

Performance 
Test 

System Test 
Build Unit 

Test 
CLM 

Integration 
Test 

Develop 

Staging 
(weekly) 

Production 
(end of each 
milestone) 

Staging 
Environment 

Production 
Environment 

IBM	
  Workload	
  
Deployer	
  

JUnit	
   IBM	
  
SmartCloud	
  
Con#nuous	
  
Delivery	
  

Ra#onal	
  
Performance	
  
Tester	
  

Integration 
Test 

3 month delivery 



© 2013 IBM Corporation 

Ra#onal	
  
Collabora#ve	
  
Lifecycle	
  
Management	
  

CLM Continuous Delivery Pipeline – Evolution 

28 

~1 week delivery 

Develop 
Test (continuous) Manual Test 

(daily) 
Usability Test 

Other Manual Test 

Unit 
Test 

Develop 

Production 
(on demand) 

Production 
Environment 

JazzHub 

System 
Test 

Performance 
Test 

Integration 
Test 

Function 
Test 

IBM	
  
UrbanCode	
  
Build	
  

IBM	
  UrbanCode	
  Deploy	
  	
  

Build 
(continuous) 

Build 

IBM	
  UrbanCode	
  Release	
  

Deployments 

Release Management 

Production-Like Environment Production-Like 
Environment 

•  Push testing upstream and automate as much as possible 

•  Use the same deployment mechanisms everywhere 

•  Strive to maintain a constant state of ship-readiness 



© 2013 IBM Corporation 

Unsolved problems… 

•  Incremental builds for Java, build avoidance 
•  Building in hours is still not fast enough for true continuous delivery 

•  Solving the platform permutations nightmare for packaged software 
•  OS times DB times App Server times Browser 
•  Increasing our focus on “Golden Topologies” 
•  Evaluating delivering products as Virtual Machine images – one pre-

configured topology 

•  Others? 

29 



© 2013 IBM Corporation 

Want to learn more? 

  Follow our DevOps activity and blog at https://jazz.net/DevOps 

  More articles from Jan and the team: 
– How to build quality in — A layered testing approach for continuous delivery [ 

https://jazz.net/wiki/bin/view/Main/LayeredTestingApproach ] 
– Mocking without the Hangover — Unit test complex systems with stubs, spies and 

matchers [ https://jazz.net/wiki/bin/view/Main/UnitTestingInTheRealWorld ] 
– Fluent Artifact Builders — A foundation for developing tests faster [ 

https://jazz.net/wiki/bin/view/Main/FluentBuilders ] 
– Hiding Selenium in UI tests — Web UI testing with maintainable abstractions [ 

https://jazz.net/wiki/bin/view/Main/WorkItemWebUITests ] 

30 


