CONFERENCE 2013 Conference: Sept 30, Oct 1-2 // Training: Oct 3-4, 2013

ﬂ m:)ving energy
entelios AARHUS . goto;

WWW.gOtoCon.com

Programming Languages and the Power Grid

Sebastian Egner, Head of Application Development,
Entelios AG, Berlin.

GOTO Aarhus, 30. September — 2. October 2013

— © Entelios 2013

Programming Languages and the Power Grid: Outline

1. The Power Grid
- Design of a national power grid
- Why and how to balance the grid
- Two things to keep in mind on national scale

2. Case Study
- Entelios AG
- The right language for the job
- Technology roadmap
- Experiences

3. Unfair Generalizations
- Two notable pitfalls of OO designs in practice
- The “2-out-of-3” rule of dealing with project risk

4. Programming Languages and the Power Grid

- Chains of availability

Programming Languages and the Power Grid: Outline

1. The Power Grid
- Design of a national power grid
- Why and how to balance the grid
- Two things to keep in mind on national scg

2. Case Study
- Entelios AG
- The right language for t
- Technology roadmap
- Experiences

- The “2-out-of-3” rule of dealinQ"w

project risk

4. Programming Languages and the Power Grid

- Chains of availability

The Power Grid

“Design is not about
the actual choices you make.
It is about the alternatives
vou have considered.”

Designing a Power Grid: Where do you want to be?

You are here!

Reliability

Costs Other:

- Environment
- Sustainability
- Major Risks

2 . — © Entelios 2013 6

Balancing the Power Grid

oTennet
GTennefT 1SO
“7¢lia

& Ohertz

-+ 750hertz

pamprion

@Tenner

TR/NSNETBW {

Germany: 4 TSOs

. © Entelios 2013 7

Balancing the Power Grid

————50.2 Hz

——50.0 Hz (put your favorite
' frequency here...)

— 49.8Hz
Operating £ 750hertz .EnBUW
Reserve
F?owevr Prrrion azrennet Germany: 15 GW per Hz
Industry Principle: Generation follows Consumption

Three level controller for reserve power (simplified):
- Frequency reserve (PRL), 20..200 mHz

- Secondary reserve (SRL), > 200 mHz, automatic
- Replacement reserve (MRL), > 15 min, manual

z © Entelios 2013 8

Balancing the Power Grid

————50.2 Hz

498 Hz

A 750hertz g

Amprion

Germany: 11% Renewables.
20 GW Peak (of 80 GW total)
on 18. August 2012.

Generation follows Consumption,

except for Wind and Solar.

I TE © Entelios 2013 9

Balancing the Power Grid

————50.2 Hz

—50.0 Hz
498 Hz

‘ -+ 750hertz

Amprion

Demand-Response
- USA: Mature, IPO of

EnerNOC, Inc., in 2007
Generation follows Consumption, - Load management within

except for Wind and Solar, large consumers common,
e.g. Xstrata Zink GmbH

- Extremely complex body of
national regulations

- Europe: Early VC-funded
companies (Entelios AG)

3 © Entelios 2013 10

and Demand-Response Management.

The Power of the Power Grid: Mind the Order of Magnitude!

100 mW 100 W 100 kW 100 MW 100 GW
personal, residential, industrial, industrial, national,
mobile phone refridgerator climate control arc furnace power grid
(e.g. Germany)
| € >|
Entelios AG

- = © Entelios 2013 11

The Batteries of the Power Grid: Sometimes Not What You Expect

You say: derinding buffer of a paper mill (Stora Enso, Eilenburg, Saxony), ...

... | say: battery with 200 MWh capacity.

© Entelios 2013 12

Case Study

Entelios AG

» Founded in 2010 by Oliver Stahl, Stephan Lindner and Thomas (Tom) Schulz

» VC-Funded (Series A completed in 2011 with a Dutch lead investor)

» Based in Germany (Munich, Berlin), employee range 20-50 + network of partners
» Runs its own Network Operations Center (NOC), with its own Balancing Area.

= Prequalified for providing Operating Reserve to German TSOs.

Services
Production of electrical energy by intelligent management of industrial consumers.
Exploiting dormant load flexibility, in particular in-production buffers.

Software-as-a-Service for Demand Response “(Virtual) Batteries Included”.

" © Entelios 2013 14

Providing a Commercially Viable Demand-Response Service

1. Knowing the rules of the game:
Law, body of other regulations and actual practice.
2. The actual business model:

“‘We sell A to B, who buy it because of C.”
Exercise: Find A, B and C. (Note: Answers are graded in EUR +/-.)

3. Finding industrial participants:
Why do they join? (Suppliers, found by sales process.)

4. Technology:
Effective, reliable, usable, ... and ever changing.

. i © Entelios 2013 15

Providing a Commercially Viable Demand-Response Service

1. Knowing the rules of the game:
Law, body of other regulations and actual practice.

2. The actual business model:

“‘We sell A to B, who buy it because of C.”
Exercise: Find A, B and C. (Note: Answers are graded in EUR +/-.)

3. Finding industrial participants:
Why do they join? (Suppliers, found by sales process.)

4. Technology:
Effective, reliable, usable, ... and ever changing.

© Entelios 2013 16

Entelios AG in Context

Customer- .
. Entelios NOC
WebService - IIII Cloud Services
Grid
N E operators/
/ balancing
ing II Entelios ' IEC 104 coordinator

Food process

e - EDIFACT
VPN
- Internet entell
Aluminum smelter \ Entelios IEC 104
VPN — II Munchen
l] o -
SSL .
Brewer Utilities/
e EDIFACT external marketers
csv
E DVG/KISS
. Balance responsible party,
Utility- ‘ supplier
WebService

© Entelios 2013 17

Entelios AG in Context

EBox]
&Jeségsirce Entelios NOC
7 Cloud Services

Grid
operators/
OC IPSEC % oper

balancing

IEC 104 coordinator U E BOX

ESS
EDIFACT

-

ing

ol 1EC 104

/SS L Utilities/
EDIFACT external marketers
csv
. Balance responsible party,
Utility- ‘ supplier

WebService

- © Entelios 2013 18

The right language for the job... So what is the job?

Key Functionality

» Back-office system: 24/7, soft-realtime signal acquisition / control signals from / to
industrial participants and grid operators. Sample rate: 2/min — 20/min

 Front-office system: Soft-realtime GUI for interactive planning and execution of
curtailment events (load reduction) under time constraints. Task rate: 0 — 1/min

* Remote connection (M2M) to industrial participants via Internet, UMTS, GSM

» Fieldbus-Interface to the PLCs of the SCADA system of the industrial participants
* Interface to the operations centers of the grid operators (IEC-104, MOLS, ...)

» Unsupervised Recovery from transient failure: UPS, auto restart at various levels

Additional Functionality (and there is a lot more...)

Monitoring GUI, background screens

Archiving of essentially all communications with external parties

Export of time series data for periodic and ad-hoc analysis

Periodic transfer of data to Energy Data Mgt. / Workflow / Trading Systems

 Various reports to participants and TSOs (for prequalification and quality control) .

The right language for the job... Ways to do a job

Snippets of how we do things:

» Cross-platform development from Day 1: Win 2008 Srv, Win 7 {32,64}-bit, MacOS X,
{Deb,Ubu,SuSE}-Linux, embedded Linux.

* For new hires: “You can BYO anything you know how to use, or you get a Windows
Notebook from us. Your choice.” So far: 100% Windows Notebooks, two of them
actually used to work in Windows.

» Productivity = Hours * Effectiveness. (The second factor is the important one.)

Some principles:

» A successful system allows the user to do what she wants.

» Each tool is suitable for some task, but for other tasks there might be better tools.
» Choose which tools not to use. (Features bundled with your favourite toolkit...)

* The hardest task of software engineerign: getting rid of something.

. © Entelios 2013 20

Bits of Our Technology Roadmap (on the Rearview Mirror)

Erlang, Yaws,

/

Python, \ HTMLS5, CSS3, JS Ruby, Rails
GUI BaseHTTPServer /\ /[~
y A
C#, WinForms /(\"_/F# WPE \ ,/ \
Erlang,
Python, MySQL
Server MySQL
C# / \
{ Erlan
f Python ?
embedded 3" party
C/C++
2010 2011 2012 2013

~ 7 © Entelios 2013 21

Green Field: Initial Pragmatic Choices

Embedded System and Server-Side Core:

« 18t choice of embedded platform turned out to be unlucky. (Their 3 level support
couldn’t / wouldn'’t fix their own product...) = Supplier eventually dropped.

« 2"d choice was a lucky one. Devices optionally with an embedded Linux, incl. a
Python 2.6 > Embedded Python! (Performance rel. to C not an issue for us.)

» Natural choice: Use Python server-side, too! 2 99% overlap of embedded and
server-side code, it's just “~-embedded” to disable database access etc.

» Considerable part written in functional style, but of course not replacing for by
home grown “foreach” calling a 1ambda.

Client-side GUI:

* Initial boundary condition: “Must run in .NET on Windows.”

 Original concept required high amount of GUI interaction. - Rich client

» Choice of GUI toolkit (2010): WinForms (mature, aged L&F) vs. WPF (modern L&F)
« 2 F# with WPF, using Functional Reactive Programming for time series.

- © Entelios 2013 22

Requirements have Changed: Adapting the Early Choices

Redesign Server-Side Core in 2012:

* Increased scalability requirements along various dimensions: sample rate,
redundancy, customers, industrial participants

» (Thread-)Concurrency in Python: It can be made to work, but that is tiring...

» Severely short on system tests. (Reasonable coverage in unit tests.)

« =2 Erlang/OTP: for concurrency and testability (and excellent previous experience)
« - Python stays for some functions (ad-hoc data analysis, forecasting, ...)

Redesign Client-side GUI:

* Requirements have changed considerably:
* Much less interaction required than original envisioned.
 Also used for non-interactive monitoring.
* Only component to have repeatedly relapsed below roll-out Q-level:
* Interaction performance (largely due to WPF’s approach to widgets)
» Memory leaks (widget resources, async + lazy + side-effects)

« > Web-GUI in Erlang, less interactive signal plots. Phasing-out F# / WPF. l

And Now Focus has Changed, too: It’s Not Early Days Anymore

Redesigned Embedded Platform in 2013:

» Motivation: Multi-controller access and redundancy, faster data acquisition,
automatic catching-up after network outage.

« = Erlang/OTP on the embedded platform)
» = Porting effort for platform, submitting a few patches upstream.

Unifying Look-and-Feel of the GUIl in 2013:

* Focus changed from functionality (=> each compontent brings its own Ul style) to an
integrated look-and-feel with brand recognition.

» Important for marketing the software as a “solution”.
 Closer integration with the business-side software (workflow, ERP, accounting etc.)

1 © Entelios 2013 24

Random Bits of Experience...

...with Python:

» Has served us well, in particular on the embedded platform.

* No “unsolvable” issues, rich library, program straight-forward to extend.

» Relatively large step from prototype (script) to production code.

» Major thread-headache for realtime system, especially controlled shutdown and restart.

...with F# / WPF:

« Has worked for us, and we do use it in production. Good fit with original concepit.

» The only part of the software the relapsed several times below roll-out quality level.

* In practice, we find it hard to modify or correct other people’s F# / WPF code.

* One F# issue reported back to Microsoft (initializer). (Turned out version 2.0.0.0 # 2.0.0.0.)

...with Erlang/OTP:

« Everybody working on the project and beyond is happy with it. (Read this again, if you want.)
* Relatively slow project start: building, testing, establish common coding style, etc.

» Three issues reported back to Erlang/OTP team (ARM middle endian; dialyzer bug; /utf8).

i © Entelios 2013 25

Random Bits of Experience...

...with MySQL.:

» The only technology that was with us from the start, and still is today.

* Nearly exclusively used in “archive mode”.

« SQL: data must be rectangular. Lucky for us, our (time series) data is!

« Had to hack our own MySQL client in Erlang: not easy, one size does not fit all
* Insulated by about 30 min. worth of buffering from the soft real-time system.

« Amazing issues (v5.1): float in — another float out; character encoding broken.
* Nothing that we couldn’t work around.

...with HTML5 / CSS3 / JS:

» Surprise: Browser compatibility less of an issue than expected.

» We keep it even simpler: CSS is hard to test, JS is browser-side (for us)

» Wrote our own CSS parser (in Erlang) for detecting dead (unreachable) CSS code.

© Entelios 2013 26

Observations on Erlang/OTP

= Relatively small step from prototype and production code.

= Easy to understand other people’s code. (The questions “How do | define a gen_server in
monadic style?” and “When do they get around to object-oriented Erlang?” disappear quickly.)

= Often you refactor in Erlang and your code becomes 2x smaller, and that alone feels like you
did something right. (Java: You refactor, it is clearly the right thing to do, and you constantly ask
yourself is the result worth all the cruft.)

» Production code often stays stable for years. (This means modularization is effective.)
= Make well-tested building blocks can be recombined into different systems.

= Final production code much smaller (say 5x c.t. Java), once it is finished. Not necessarily faster
to develop, though.

= Difficult: Shutting down processes properly without undue error propagation. (Eventually, |
wrote a small combinatorial program to generate and study all possible ways a gen_server
example can exit, and what happens then.)

= Common_test: Very useful, but noisy...

= QuickCheck: Complements hand-crafted tests perfectly. Hand crafted: rifle. QC: shot gun.
» Great: interactively debugging a live system.

= Great: resilience (Example: system was limping on for hours, did not loose any data)

» Great: hot code-update (we do the easy cases, only)

What We Have Added to Erlang/OTP

Our own build mechanism “ebt” (= Entelios/Erlang Build Tool), including:

= build the system (on Linux, Windows and MacOSX)

» build the embedded system (on ARM-based Linux, on server as cross-compile)

» run the tests (Common_test). Variant: run only the fastest tests until 5 min. are up

= run the tests with cover analysis (Cover)

= pragma to silence Dialyzer (static code analysis): .. $ dialyzer: -warn failing call
= internationalization (“i18n”): crawls the code for certain function calls, then runs GNU gettext
» check basic coding standards (no tabs etc.): crawl .erl, .hrl, .yaws, .css, .js, etc.

= compile Mercurial version into the code: every build knows its version!

» run Leex/Yecc (parser generators)

General libraries within our Erlang code base:

» strings (UTF-8 as binary), timestamps (ms precision), option lists (= uptight proplists)
Tracing (application-defined, not by structure of process tree)

Running Gnuplot, GLPK and Python (on Linux, Windows and MacOSX)

Password file access

validation of HTML5, CSS3

What We Are NOT Using from Erlang/OTP

Meta-programming and ways to obscure function calls at the call site:

» parse_transformations: consider using Erlang, repeat

» (define own) behaviour: we did and we rolled it back for reducing code redundancy
» —import: when fingers get sore, —-define an abbreviation

“Let it crash!” and error discipline in general:

» |[n a test: yes

In the webserver: no.

In a library: probably not. (It might end up part of the webserver, and it usually does.)

We like {ok,Value} | {error,Reason::atom(),Details::proplist ()} alot.
There is a difference between a programming error (crash is good) and bad input.

check MyType (Arg) functions returning ok | {error, , } do an in-depth check of a data
structure (incl. dynamic invariants); used as assertion (ok check (..))orin a case.

Type annotations, documentation and helping with static type analysis:
= —compile (export all):just-export
» —spec: nice feature, we avoid it. Found in places where proper documentation was due.

. | © Entelios 2013 29

Unfair
Generalizations

When OO in the wild fails (1)... “Jupiter Design”

s« class Point

® «—— class Rect

«— class EverythingElseAndTheGUI_too

: © Entelios 2013 31

When OO in the wild fails (1)... “Jupiter Design”

s« class Point

® «—— class Rect

«— class EverythingElseAndTheGUI_too

method innocuous_looking(void) {
indirectly _access(potentially, any,
instance, variable);

— © Entelios 2013 32

When OO in the wild fails (1)... “Jupiter Design”

s« class Point

® «—— class Rect

«— class EverythingElseAndTheGUI_too

method innocuous_looking(void) {
indirectly _access(potentially, any,
instance, variable);

}

Cause of Failure: Human Error...
(“overuse of global variables”)

© Entelios 2013 33

...but it’s also related to the tools! The Economics of Redesign

Effort
required
for next
redesign

Time

. = © Entelios 2013 34

..but it’s also related to the tools! The Economics of Redesign

Effort .
required
for next
redesign

Time

© Entelios 2013 35

..but it’s also related to the tools! The Economics of Redesign

Effort
required
for next
redesign

Time

© Entelios 2013 36

...but it’s also related to the tools! The Economics of Redesign

Effort ,’O o
required | i
I 4
for next - Pt
redesign o _F_P_'sh
ol
: routing new
adding
methods arguments
through Time
functions

— © Entelios 2013 37

When OO in the wild fails (2)... “State Limbo”

def handle request(self):
self represents ‘moon’

*
request\v

complex
server
thingy

self represents ‘cloud’

) self.cloudy _moon_setter()

) self.rise_and_shine()

vAg ‘ ’
y O # self represents ‘sun

return ‘ok’

© Entelios 2013 38

When OO in the wild fails (2)... “State Limbo”

handle_call(Request, , S1) —>
% state S1 is ‘moon’

*
request\v

complex
server
thingy

% made a new state S2 = ‘cloud’

> S2 = cloudy_moon_set(S1)

) S3 =risen_and_shining(S2)

If % yet another state S3 = ‘sun’

{reply, ok, S3}. % set next state

. — © Entelios 2013 39

When OO in the wild fails (2)... “State Limbo”

def handle request(self):
self represents ‘moon’

*
request\v

> self.cloudy _moon_setter()

complex
fr(:;v;; @ # What is the state now?
Clean up OR press on?

B # But how?

. return ‘bummer’

© Entelios 2013 40

When OO in the wild fails (2)... “State Limbo”

handle call(Request, , S1)
% state S1 is ‘moon’

*
request\v

-> ’
) S2 = cloudy_moon_set(S1)

complex
SEVEN % The state is S1 + side-effects

thingy
% from cloudy moon_set/1.
reply \ % Server state S1 is still around,
— ./ e % can be used to clean up.

NP {reply, bummer, S1}.

© Entelios 2013 41

The “2-out-of-3” Rule of Dealing of Project Risk

Fixed Risk Remark
Functionality
FD More resources Traditional “waterfall” project
FC Sliding deadlines Traditional “institutional” project
DC Feature starvation “Agile” project
F Slow & expensive Confused “agile” with carte blanche
Duration Cost D Unusable result Endless financial renegotiation
(Completion (Burn Rate) C Unusable result Endless feature reprioritizing
Date)
FDC Project locks up “Ignore the risks” project, will blow up
-/- Loss of focus “Nothing gets ever done” project
Examples

FD: Module of deep space probe (dependability requirements, launch window)
FC: Next version of major operating system (functionality previews, limited resources for fixing bugs)
DC: Milestone of start-up company (expectations of partners, hours/day limited)

1 © Entelios 2013 42

Programming

Languages and
the Power Grid

Summary

= “Power Grid” sounds more fixed and set than it actually is.
» Society’s preferences for the power grid can and do change.

» Entelios AG is a young company helping stabilize the grid using
the approach of Demand Response.

» Functional Programming concepts and tools have served us
well in accomplishing this.

» Systems connected to the power grid could benefit by re-
evaluating the basic assumptions.

B © Entelios 2013 44

Time for
Questions

