
CHALLENGES FOR FRONT END 
DEVELOPERS OF LARGE WEB 

APPLICATIONS

Graham Hinchly


FT Labs!



Me 



app.ft.com 



Some things on the web 
are hard 



When you have a large 
amount of code they get 

really hard 



But why is it harder on 
the web than elsewhere? 



Languages lack 
encapsulation 



Browser rendering model 
designed for documents 



Built around assumption of always 
on, stable internet connection 

by GraciolliDotCom - https://www.flickr.com/photos/marcelograciolli/2807100863!



How do we deal with 
this? 



Scream in the street for a bit. YMMV. 
by mdanys -https://www.flickr.com/photos/mindaugasdanys/3766009204/!



Offline Modularisation Performance 



Modularisation 
Encapsulation, managing dependencies and 
using components 



Encapsulation is our 
friend 



CommonJS Spec 

•  Declare dependencies 
at the top of the file 
with require!

•  Expose public API via 
exports !

•  Not supported by the 
browser !!

// Declare dependencies!
var depA = require(“depA”);!
var depB = require(“./../depB);!
!
!

/**!
Module code!
**/!
!
// Export public API!
exports.foo = foo;!
!



Allows you to write 
JavaScript like this 



But what if I want to use bits 
of other peoples’ code… 



Cleanly manages your 
JavaScript dependencies 



npm + browserify 

•  Install from npm 
registry 

•  …or specify git URL 

•  Great for breaking up a 
monolith 

$ npm install fastclick --save!

{!

  "name": "ft-app",!

  "dependencies": {!

    "fastclick": "^1.0.3",!

!  [...]!

  }!

}!

package.json!

someModule.js!

var fc = require(“fastclick”);!

/**!

Module code!

**/!



It’s not perfect (yet…) 
– Git tags don’t guarantee repeatability 
•  Use npm-shrinkwrap 

– Registry introduces a single point of failure 
•  We use a private lazy cache 



CSS isn’t encapsulated 
either… 



Leak-proof styling 
for reusable 
components 

•  Context agnostic 
•  Non-semantic naming – 

clear that it’s reusable 
•  Classes prefixed with 

component name 

.apple {}!

.apple_headline {!

!font-size: 40px;!
}!

.apple_subhead {!
!font-size: 20px;!

}!

.apple_body {!
!font-size: 14px;!

!column-count: 2;!

!color: #333!
}!

!

<div class=“apple”>!
!<h2 class=“apple_headline”>…!

!<h3 class=“apple_subhead”>…!
!<div class=“apple_body”>…!

</div>!

Code example from smashingmagazine.com/
2013/05/23/building-the-new-financial-times-
web-app-a-case-study/  



Works for one app – what about 
sharing components across an 

entire organisation? 



origami.ft.com 



The future – fully 
encapsulated web 

components? 



Performance 
Maintaining smooth animations and a 
responsive UI 



Long running processes block user 
interactions 

Perils of a single thread 



Missed frames make animations, 
scrolling and swiping feel “janky” 

Synchronous tasks also 
block screen updates 

Perils of a single thread  



6 frames per second 
Great for animated gifs 
Rubbish for your app 



Consistent frame rate 

We want something that’s silky smooth, so we aim for 60 
frames per second. This gives us just 16.6ms between frames 



What happens on this thread? 

JavaScript execution 

Style recalculation 

Layout 

Paint 



JavaScript execution 

JavaScript execution is rarely the bottleneck 



Style recalculation 

Layout 

Paint 

Which means we need to understand the other 
operations taking place (sorry!) 



Layout  
Working out what goes where on the screen 

Style recalculation 
Working out what things should look like from 
CSS & DOM 

  

Paint 
Putting the pixels onto the screen* 

* Technically this is the browser painting to a bitmap and then 

uploading to the GPU rather than putting pixels directly on the screen  



Use animation 
effects which avoid 
relayout/paint 

•  transforms: 
–  translate 
–  scale 
–  rotation 

•  opacity 
•  These use the GPU, which is 

optimised for just such a task 

// Position/margin slow!
style.top = x;!
style.marginLeft = x;!
!
// translate & translate3d fast!

style[transform] = !
“translate(“ + x + “px,“ + x + 
“px)”;!
!
/** may need to use “translateZ 
hack” to manually force layer 
creation **/!
style[transform] = 
“translateZ(0)”!
!

!



If you can’t eliminate, 
reduce time spent doing 

these tasks 



Time for some detective work… 

by minifig - https://www.flickr.com/photos/minifig/3174009125!



Timeline – shows us time spent in JS execution, layout and 
paint 

From: http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/!



Timeline “frames view” shows amount of work required to 
render each frame 

Taller bars = slower 

We want all our frames below 
 the 60 FPS line 



Let’s see how much time the entire page would take to 
paint… 



Keep your painting simple… 
•  Hide elements to see what impact they  

make on page paint time 
•  Common suspects: lots of box-shadow  

and border-radius 
by Colin Tsoi -https://www.flickr.com/photos/cokedragon/9047633335/!



Reducing relayout 
Writing to the DOM invalidates  
previous calculations 

Reading a geometric value from the DOM once 
it has been invalidated forces a relayout 



Reducing relayout 

Doing this repeatedly prevents the browser from being able 
to render a frame, resulting in dropped frames 



Batch DOM read/writes 
Instead we can queue these reads and writes together, and  
execute them once per frame 



This can be hard to do manually, 
especially with lots of components, but 
we can manage it with a library: 

wilsonpage/fastdom 



Putting it all together:  
Swiping on app.ft.com 

ftlabs/ftscroller 



      More 
•  Videos 
•  Debugging CSS & Render Performance 

–  https://developers.google.com/events/io/sessions/
324511365 

•  Lots of good tutorials/blogs 
•  html5rocks.com/en/features/performance!
•  jankfree.org/!
•  Paul Lewis: aerotwist.com/!

 



Offline 
Client-side storage options and their 
limitations 



Cookies 

LocalStorage (fast, but synchronous) 

AppCache (flawed, but usable)  

IndexedDB (async, but tricky to use) 

Client Side Storage Options 



Cookies 

LocalStorage 

AppCache 

IndexedDB 

AppCache 
•  Well intentioned, but flawed 
•  However, it is usable 
– We use it for bare minimum: 

bootstrap code, fonts, splash screen 
images 



Cookies 

LocalStorage 

AppCache 

IndexedDB 

LocalStorage 
•  Simple API 
•  Fast…? 
 



Cookies 

LocalStorage 

AppCache 

IndexedDB 

Faster than cache… 

http://www.mobify.com/blog/smartphone-localstorage-outperforms-browser-cache/ 



Cookies 

LocalStorage 

AppCache 

IndexedDB 

LocalStorage 
•  But:!
–  Limited storage!
–  Synchronous!

•  File I/O for persistence means it can 
have variable performance!

–  Odd behaviour in Safari private browsing!
–  We use a lightweight wrapper called 

Superstore by Matt Andrews!
matthew-andrews/superstore 



Cookies 

LocalStorage 

AppCache 

IndexedDB 

IndexedDB 
•  Async key value object store 
–  We use this for articles and images 

•  Not supported everywhere - use polyfill [1] to 
support (long deprecated) WebSQL  

•  Managing versions and migrations can be 
awkward 

•  Documentation is variable 

[1] http://nparashuram.com/IndexedDBShim/ or 
https://github.com/mozilla/localForage !



Future: ServiceWorker 
•  Sits in the middle of browser and network!
•  Lots of good things:!
–  Extensible w/ low level, granular control !
–  “Cache API” for storage!
–  Async!

•  But:!
–  No access to localStorage!
–  HTTPS only!



      More 
•  Tutorial: Building an offline web app          

labs.ft.com/2012/08/basic-offline-html5-web-app/ 
•  Storage quotas:

html5rocks.com/en/tutorials/offline/quota-research 
•  Maximising storage by using UTF-8 instead of UTF-16: 

labs.ft.com/2012/06/text-re-encoding-for-optimising-storage-
capacity-in-the-browser/ 

•  Using ServiceWorker today:
jakearchibald.com/2014/using-serviceworker-today/!



Summary 



A quick recap…. 
•  Modularisation 

–  npm + browserify works well for managing client side JS 
dependencies  

–  Prefixed class names for CSS component elements 
•  Performance 

–  Good tools, profile your own use case. Look out for relayout 
and paint as bottlenecks – batch DOM read/writes and stick 
to known fast animations 

•  Offline 
–  Hard with limited options, prefer async IndexedDB, look out 

for ServiceWorker 



Thanks! 
grahamhinchly 

graham.hinchly@ft.com 

labs.ft.com/jobs 

ftlabs | financial-times 


