O1l0,

conference

COPENHAGEN

INTERNATIONAL
SOFTWARE DEVELOPMENT

CONFERENCE 2014

9

SCALING DURING
HYPER-GROWTH

Oliver Nicholas
Uber Technologies, Inc

’ Followu‘s@gotocphh : 7 Training: Sept 23-24 // Conference: Sept 25-2k. 201Y4

AS IT TURNS 0OUT,

SCALING DURING HYPER-GROWTH IS MUCH
EASIER IF YOU MAKE SMART DECISIONS
BEFORE THE HYPER-GROWTH PART.

WHO AM 1?

Qualifications

Engineering & Engineering
Management positions at:

2006-2008: Ooga Labs
4x employee growth

2008-2012 Yelp
10x employee growth
10x traffic growth

2012-Present Uber
15x employee growth
"a lot of" traffic growth

The Uber Experience

Uber?

* Founded in 2009 in San
Francisco

* First cars on the roads In
Summer 2010

* $1.4B+ funding

* Majority of employees are
working locally within their city

* Aarhus R&D site opened
January 2014 - Hiring Software
Engineers!!

Anti-Qualifications

* 2.6 GPA in High School

* Only 8 years of post-
university professional
experience.

* Only 3 years
management experience

* Haven't read a full book
this calendar year

YOU NEED A WIKI

* Doesn't matter where it's hosted, but you may as
well run it yourself.

* Make sure you take backups.

* Make sure it's accessible even when your main
infrastructure is down.

* Document processes that should be followed and
lessons learned

PEOPLE

SUPER IMPORTANT

People

* At many points, people will be your primary
constraint.

* Roughly speaking, you want nerdy, intelligent,
humble "A Players" who don't mind rolling up their
sleeves. You want grit.

Hire Generalists

* (Generalists are dynamic; they can solve any
problem that arises without the need to make yet
another hire.

* Of course, you shouldn't hire a generalist to
design a nuclear reactor.

Hire "A Players’

* A Players are those who will get involved and be
passionate about the project; they are dedicated.

* "A Players hire A Players. B Players hire C and D
Players.”

Have a People Person

* Not a People Person? Get one.

> o o . - B . ~ --
—~ . s
4 ; oy > -~ 3
A . ol - - ,' L » .
< ” “> T n e a -
‘m - - - g -

DESIGN FOR FAILURE

YOU'LL BE A HAPPIER PERSON.

Design for Failure

* Your datacenter will fail you.
* Your servers will fail you.

* Your database will fail you.
* Your own code will fail you.
* Your people will fail you.

* This Is all becoming more true over time.

EXpect Fallure

'If you want to make God laugh, tell him about your plans."

* |n the old days, hardware was supposedly stable.
And it still failed sometimes.

* \We've been trying to internalize this for over 25
years - RAID was named in 1987.

* \We now have permission to expect failure, and
that makes all the difference.

lests won't save you

* A good testing and staging regime will significantly
reduce development time. They will also catch
some bugs.

* They will not prevent failures.

FAILURE-RESILIENT ARCHITECTURE

EXPECT THE UNEXPECTED

Design for Failure

At the datacenter level:

* Redundant power feeds.

* Redundant Internet connections.

* Redundant datacenters (or AZ's)! Far enough
apart that a small meteor strike won't disable all of

them.

Design for Failure

At the server level:

* Disks must be RAIDed.

* Master databases must have slaves and you must
practice quick promotion.

* Master/slave pairs or entire groups of app servers
must be rack-distributed to withstand top-of-rack
switch or power failure.

Design for Failure

At the service level:
* Processes should be stateless where possible.

* Calls to unreliable systems and all 3rd parties
should have reasonable timeouts.

* Functionality should gracefully degrade if a
particular sub-service is inaccessible.

Service Oriented
Architecture

* Smaller codebases.
* Smaller deployable units.
* Better-defined areas of responsibility.

* But don't forget a good code search tool!

Service |solation

* \Where possible, isolate your services from failures
in each other.

* Be willing treat the service boundary the same as
you would any other network boundary - expect
failure.

* Separate critical functions into their own services,
and accept different deploy schedules or
processes for them.

SITUATIONAL AWARENESS

YOU CAN'T REACT IF YOU DON'T KNOW WHAT'S FAILED

What Failure?

* Even with good design decisions, you will
experience failures and regressions.

* You need to know when something has failed.

* Not all failures are obvious! An endpoint going
from 100ms to 10,000ms is as good as a failure In
most circumstances, but HT TP 200 status codes
might mask it.

ITrack Everything

* Requires infrastructure investment since this is by
nature a high-volume activity.

* Done correctly, helps you move faster.

| 0g Everything

* Log Everything”.

* "Don't ever log HTTP response bodies or POST
request bodies.

* Aggregate your logs, don't make people intrude on
sensitive production infrastructure for them.

* Make recent logs easily searchable!

* Put them all on S3 and run MapReduce jobs on them!

Graph Everything

* Emit stats about your application into your time-
series / graphing system.

* Do this in a separate thread of execution, or from
your logs.

* Link your useful dashboards on your wiki.

Monitor Everything

*

*

The foundation of rapid iteration is:

* Automated, comprehensive testing.

* Knowing if something has gone wrong.
Relentlessly add monitoring and tune your thresholds.
Use PagerDuty.

Monitor PagerDuty.

Write post-mortems. Put them on your wiki. Use them to add
more monitoring.

ITrack Everything

* The beauty of Track Everything is that once you
take the time to implement it, it lets you move
faster.

* |ess afraid to deploy.

* |Less need for dedicated QA.

FOUNDATIONAL TECHNOLOGY CHOICES

TAKE RISKS ONLY WHERE IT MAKES SENSE

Use Boring Technology

* Old [active] software might be boring, but:
* The bugs have already been worked out.

* There are lots of experienced people to hire.

All Boring Software?

* A good rule of thumb: Don't take risks where you
don't intend to innovate.

* |f you have to get experimental, ensure what you
choose has a very active developer community.

* Just don't take risks with your primary datastore.

Right tool for the job

* As early as possible, separate OLTP from batch/
offline workloads.

* |f you don't need transactions, you may not need
a relational database at all.

* |f you can afford to lose some data, consider
storing it in-memory.

Be Secure

* Security is hard, dealing with lapses is harder; wastes
political capital and lots of time.

* Encrypt your offsite database backups.
* Encrypt/obfuscate PKs shown to the front-end.

* Have a proper RBAC framework, even if the first
Implementation is naive.

* Centralize auth so it's harder to mess up.

* Don't roll your own crypto.

Create frameworks

* Create frameworks that encapsulate your best
practices.

* "Strongly suggest” that engineers build new
projects on these frameworks.

Clay Development Framework “Play-doh” Development Framework

Provisioning Layer (Puppet, etc.)
Datacenter West Datacenter East

What are we doing”

* You need a wiki.
* Hire gritty polymaths.

* Pick boring technology where you don't really require innovation; resist the urge to
try everything new.

* Design systems with the expectation that nearly every downstream system might
fail or be slow.

* Reduce statefulness, and ensure good redundancy and failover for stateful
systems.

* Track everything.
* Stay secure.

* Encode all these best practices into a framework for your developers.

