
SCALING DURING
HYPER-GROWTH

Oliver Nicholas
Uber Technologies, Inc

AS IT TURNS OUT,
SCALING DURING HYPER-GROWTH IS MUCH
EASIER IF YOU MAKE SMART DECISIONS
BEFORE THE HYPER-GROWTH PART.

WHO AM I?

Qualifications
Engineering & Engineering
Management positions at:

!
2006-2008: Ooga Labs
4x employee growth

!
2008-2012 Yelp

10x employee growth

10x traffic growth

!
2012-Present Uber
15x employee growth

"a lot of" traffic growth

The Uber Experience

Uber?
Founded in 2009 in San
Francisco

First cars on the roads in
Summer 2010

$1.4B+ funding

Majority of employees are
working locally within their city

Aarhus R&D site opened
January 2014 - Hiring Software
Engineers!!

Anti-Qualifications
2.6 GPA in High School

Only 8 years of post-
university professional
experience.

Only 3 years
management experience

Haven't read a full book
this calendar year

YOU NEED A WIKI

Doesn't matter where it's hosted, but you may as
well run it yourself.

Make sure you take backups.

Make sure it's accessible even when your main
infrastructure is down.

Document processes that should be followed and
lessons learned

PEOPLE
SUPER IMPORTANT

People

At many points, people will be your primary
constraint.

Roughly speaking, you want nerdy, intelligent,
humble "A Players" who don't mind rolling up their
sleeves. You want grit.

Hire Generalists

Generalists are dynamic; they can solve any
problem that arises without the need to make yet
another hire.

Of course, you shouldn't hire a generalist to
design a nuclear reactor.

Hire "A Players"

A Players are those who will get involved and be
passionate about the project; they are dedicated.

"A Players hire A Players. B Players hire C and D
Players."

Have a People Person

Not a People Person? Get one.

DESIGN FOR FAILURE	
YOU'LL BE A HAPPIER PERSON.

Design for Failure
Your datacenter will fail you.

Your servers will fail you.

Your database will fail you.

Your own code will fail you.

Your people will fail you.

This is all becoming more true over time.

Expect Failure

"If you want to make God laugh, tell him about your plans."

In the old days, hardware was supposedly stable.
And it still failed sometimes.

We've been trying to internalize this for over 25
years - RAID was named in 1987.

We now have permission to expect failure, and
that makes all the difference.

Tests won't save you

A good testing and staging regime will significantly
reduce development time. They will also catch
some bugs.

They will not prevent failures.

FAILURE-RESILIENT ARCHITECTURE
EXPECT THE UNEXPECTED

Design for Failure

At the datacenter level:

Redundant power feeds.

Redundant Internet connections.

Redundant datacenters (or AZ's)! Far enough
apart that a small meteor strike won't disable all of
them.

Design for Failure

At the server level:

Disks must be RAIDed.

Master databases must have slaves and you must
practice quick promotion.

Master/slave pairs or entire groups of app servers
must be rack-distributed to withstand top-of-rack
switch or power failure.

Design for Failure

At the service level:

Processes should be stateless where possible.

Calls to unreliable systems and all 3rd parties
should have reasonable timeouts.

Functionality should gracefully degrade if a
particular sub-service is inaccessible.

Service Oriented
Architecture

Smaller codebases.

Smaller deployable units.

Better-defined areas of responsibility.

But don't forget a good code search tool!

Service Isolation
Where possible, isolate your services from failures
in each other.

Be willing treat the service boundary the same as
you would any other network boundary - expect
failure.

Separate critical functions into their own services,
and accept different deploy schedules or
processes for them.

SITUATIONAL AWARENESS
YOU CAN'T REACT IF YOU DON'T KNOW WHAT'S FAILED

What Failure?

Even with good design decisions, you will
experience failures and regressions.

You need to know when something has failed.

Not all failures are obvious! An endpoint going
from 100ms to 10,000ms is as good as a failure in
most circumstances, but HTTP 200 status codes
might mask it.

Track Everything

Requires infrastructure investment since this is by
nature a high-volume activity.

Done correctly, helps you move faster.

Log Everything
Log Everything*.

*Don't ever log HTTP response bodies or POST
request bodies.

Aggregate your logs, don't make people intrude on
sensitive production infrastructure for them.

Make recent logs easily searchable!

Put them all on S3 and run MapReduce jobs on them!

Graph Everything

Emit stats about your application into your time-
series / graphing system.

Do this in a separate thread of execution, or from
your logs.

Link your useful dashboards on your wiki.

Monitor Everything
The foundation of rapid iteration is:

Automated, comprehensive testing.

Knowing if something has gone wrong.

Relentlessly add monitoring and tune your thresholds.

Use PagerDuty.

Monitor PagerDuty.

Write post-mortems. Put them on your wiki. Use them to add
more monitoring.

Track Everything

The beauty of Track Everything is that once you
take the time to implement it, it lets you move
faster.

Less afraid to deploy.

Less need for dedicated QA.

FOUNDATIONAL TECHNOLOGY CHOICES
TAKE RISKS ONLY WHERE IT MAKES SENSE

Use Boring Technology

Old [active] software might be boring, but:

The bugs have already been worked out.

There are lots of experienced people to hire.

All Boring Software?

A good rule of thumb: Don't take risks where you
don't intend to innovate.

If you have to get experimental, ensure what you
choose has a very active developer community.

Just don't take risks with your primary datastore.

Right tool for the job

As early as possible, separate OLTP from batch/
offline workloads.

If you don't need transactions, you may not need
a relational database at all.

If you can afford to lose some data, consider
storing it in-memory.

Be Secure
Security is hard, dealing with lapses is harder; wastes
political capital and lots of time.

Encrypt your offsite database backups.

Encrypt/obfuscate PKs shown to the front-end.

Have a proper RBAC framework, even if the first
implementation is naive.

Centralize auth so it's harder to mess up.

Don't roll your own crypto.

Create frameworks
Create frameworks that encapsulate your best
practices.

"Strongly suggest" that engineers build new
projects on these frameworks.

Datacenter West Datacenter East EC2

Provisioning Layer (Puppet, etc.)

Clay Development Framework

Services Services Services Services

“Play-doh” Development Framework

Postgres MySQL Kafka Redis …

Monitoring

Alerting

Analytics

What are we doing?
You need a wiki.

Hire gritty polymaths.

Pick boring technology where you don't really require innovation; resist the urge to
try everything new.

Design systems with the expectation that nearly every downstream system might
fail or be slow.

Reduce statefulness, and ensure good redundancy and failover for stateful
systems.

Track everything.

Stay secure.

Encode all these best practices into a framework for your developers.

