
MAKING ENTERPRISE DATA

AVAILABLE IN REAL TIME

WITH ELASTICSEARCH

Yann Cluchey

CTO @ Cogenta

CTO @ GfK Online Pricing Intelligence

What is Enterprise Data?

What is Enterprise Data?

Online Pricing Intelligence

1. Gather data from 500+ of eCommerce sites

2. Organise into high quality market view

3. Competitive intelligence tools

Price,

Stock,

Meta

Price,

Stock,

Meta

Price,

Stock,

Meta Price,

Stock,

Meta

HTML

Custom Crawler

 Parse web content

 Discover product data

 Tracking 20m products

 Daily+

HTML

HTML

HTML

Database

Processing, Storage

 Enrichment

 Persistent Storage

 Product Catalogue

 + time series data

Processing

Database

Thing #1 - Detection

 Identify distinct products

 Automated information retrieval

 Lucene + custom index builder

 Continuous process

 (Humans for QA)

Lucene

Index

Index Builder

GUI

Matcher

Thing #2 - BI Tools

 Web Applications

 Also based on Lucene

 Batch index build process

 Per-customer indexes

Database

Customer

Index 1

Index Builder

BI Tools

Customer

Index 2

Customer

Index 3

Thing #1 - Pain

 Continuously indexing

 Track changes, read back out to index

 Drain on performance

 Latency, coping with peaks

 Full rebuild for index schema change

or inconsistencies

 Full rebuild doesn’t scale well…

 Unnecessary work..?
Lucene

Index

Index Builder

GUI

Database

Customer

Index 2

Thing #2 - Pain

 Twice daily batch rebuild, per customer

 Very slow

 Moar customers?

 Moar data?

 Moar often?

 Data set too complex,

keeps changing

 Index shipping

 Moar web servers?

Database

Customer

Index 1

Index Builder

BI Tools

Customer

Index 3

Indexing

Database

Batch Sync

Web Server 1 Web Server 2

Pain Points

 As data, customers scale,

processes slow down

 Adapting to change

 Easy to layer on,

hard to make fundamental changes

 Read vs write concerns

 Database Maintenance

Index

Index Builder

Database

Goals

Eliminate latencies

 Improve scalability

 Improve availability

Something achievable

Your mileage will vary

elasticsearch

 Open source, distributed search engine

 Based on Lucene, fully featured API

 Querying, filtering, aggregation

 Text processing / IR

 Schema-free

 Yummy

(real-time, sharding, highly available)

 Silver bullets not included

Indexing
Database

Indexing
Database

Our Pipeline

Database

Crawlers
Crawlers

Processors
Processors

Processors
Processors

Processors
Processors
Indexers

Indexes
Indexes

Indexes

Web Servers
Web Servers

Web Servers

Our New Pipeline

Database

Crawlers
Crawlers

Processors
Processors

Processors
Processors

Processors
Processors
Indexers

Indexes
Indexes

Indexes
Web Servers

Web Servers
Web Servers

Event Hooks

 Messages fired OnCreate.. and OnUpdate

 Payload contains everything needed for indexing

 The data

 Keys (still mastered in SQL)

 Versioning

 Sender has all the information already

 Use RabbitMQ to control event message flow

 Messages are durable

Indexing Strategy

 RESTful API (HTTP, Thrift, Memcache)

 Use bulk methods

 They support percolation

 Rivers (pull)

 RabbitMQ River

 JDBC River

 Mongo/Couch/etc. River

 Logstash

Index Q
Indexer

Event Q

Model Your Data

 What’s in your documents?

 Database = Index

 Table = Type ...?

 Start backwards

 What do your applications need?

 How will they need to query the data?

 Prototyping! Fail quickly!

 elasticsearch supports Nested objects, parent/child docs

Joins

 Events relate to line-items

 Amazon decreased price

 Pixmania is running a promotion

 Need to group by Product

 Use key/value store

 Get full Product document

 Modify it, write it back

 Enqueue indexing instruction

Indexer Event Q
3 3 5

1 4

1

2

1
3

4
Index Q

Key/value

store

5

Where to join?

 elasticsearch

 Consider performance

 Depends how data is structured/indexed (e.g. parent/child)

 Compression, collisions

 In-memory cache (e.g. Memcache)

 Persistent storage (e.g. Cassandra or Mongo)

 Two awesome benefits

 Quickly re-index if needed

 Updates have access to the full Product data

 Serialisation is costly

Synchronisation & Concurrency

 Fault tolerance

 Code to expect missing data

 Out of sequence events

 Concurrency Control

 Apply Optimistic Concurrency Control at Mongo

 Optimise for collisions

Synchronisation & Concurrency

 Synchronisation

 Out of sequence index instructions

 elasticsearch external versioning

 Can rebuild from scratch if need to

 Consistency

 Which version is right?

 Dates

 Revision numbers from SQL

 Independent updates

Figures

 Ingestion

 20m data points/day (continuously)

 ~ 200GB

 3K msgs/second at peak

 Hardware

 SQL: 2 x 12-core, 64GB, 72-spindle SAN

 Indexing: 4 x 4-core, 8GB

 Mongo: 1 x 4-core, 16GB, 1xSSD

 Elastic: 5 x 4-core, 16GB, 1xSSD

Custom-Built

Lucene

elasticsearch

Latency 3 hours < 1 second

Bottleneck Disk (SQL) CPU

Managing Change

Key/value

store

Index_A

Client

Indexer Event Q

Alias

Index_B

Index

Index_B Index_A

Thanks

 @YannCluchey

 Concurrency Patterns with MongoDB
http://slidesha.re/YFOehF

 Consistency without Consensus
Peter Bourgon, SoundCloud
http://bit.ly/1DUAO1R

 Eventually Consistent Data Structures
Sean Cribbs, Basho
https://vimeo.com/43903960

http://slidesha.re/YFOehF
http://slidesha.re/YFOehF
http://bit.ly/1DUAO1R
http://bit.ly/1DUAO1R
https://vimeo.com/43903960
https://vimeo.com/43903960

