
MAKING ENTERPRISE DATA

AVAILABLE IN REAL TIME

WITH ELASTICSEARCH

Yann Cluchey

CTO @ Cogenta

CTO @ GfK Online Pricing Intelligence

What is Enterprise Data?

What is Enterprise Data?

Online Pricing Intelligence

1. Gather data from 500+ of eCommerce sites

2. Organise into high quality market view

3. Competitive intelligence tools

Price,

Stock,

Meta

Price,

Stock,

Meta

Price,

Stock,

Meta Price,

Stock,

Meta

HTML

Custom Crawler

 Parse web content

 Discover product data

 Tracking 20m products

 Daily+

HTML

HTML

HTML

Database

Processing, Storage

 Enrichment

 Persistent Storage

 Product Catalogue

 + time series data

Processing

Database

Thing #1 - Detection

 Identify distinct products

 Automated information retrieval

 Lucene + custom index builder

 Continuous process

 (Humans for QA)

Lucene

Index

Index Builder

GUI

Matcher

Thing #2 - BI Tools

 Web Applications

 Also based on Lucene

 Batch index build process

 Per-customer indexes

Database

Customer

Index 1

Index Builder

BI Tools

Customer

Index 2

Customer

Index 3

Thing #1 - Pain

 Continuously indexing

 Track changes, read back out to index

 Drain on performance

 Latency, coping with peaks

 Full rebuild for index schema change

or inconsistencies

 Full rebuild doesn’t scale well…

 Unnecessary work..?
Lucene

Index

Index Builder

GUI

Database

Customer

Index 2

Thing #2 - Pain

 Twice daily batch rebuild, per customer

 Very slow

 Moar customers?

 Moar data?

 Moar often?

 Data set too complex,

keeps changing

 Index shipping

 Moar web servers?

Database

Customer

Index 1

Index Builder

BI Tools

Customer

Index 3

Indexing

Database

Batch Sync

Web Server 1 Web Server 2

Pain Points

 As data, customers scale,

processes slow down

 Adapting to change

 Easy to layer on,

hard to make fundamental changes

 Read vs write concerns

 Database Maintenance

Index

Index Builder

Database

Goals

Eliminate latencies

 Improve scalability

 Improve availability

Something achievable

Your mileage will vary

elasticsearch

 Open source, distributed search engine

 Based on Lucene, fully featured API

 Querying, filtering, aggregation

 Text processing / IR

 Schema-free

 Yummy

(real-time, sharding, highly available)

 Silver bullets not included

Indexing
Database

Indexing
Database

Our Pipeline

Database

Crawlers
Crawlers

Processors
Processors

Processors
Processors

Processors
Processors
Indexers

Indexes
Indexes

Indexes

Web Servers
Web Servers

Web Servers

Our New Pipeline

Database

Crawlers
Crawlers

Processors
Processors

Processors
Processors

Processors
Processors
Indexers

Indexes
Indexes

Indexes
Web Servers

Web Servers
Web Servers

Event Hooks

 Messages fired OnCreate.. and OnUpdate

 Payload contains everything needed for indexing

 The data

 Keys (still mastered in SQL)

 Versioning

 Sender has all the information already

 Use RabbitMQ to control event message flow

 Messages are durable

Indexing Strategy

 RESTful API (HTTP, Thrift, Memcache)

 Use bulk methods

 They support percolation

 Rivers (pull)

 RabbitMQ River

 JDBC River

 Mongo/Couch/etc. River

 Logstash

Index Q
Indexer

Event Q

Model Your Data

 What’s in your documents?

 Database = Index

 Table = Type ...?

 Start backwards

 What do your applications need?

 How will they need to query the data?

 Prototyping! Fail quickly!

 elasticsearch supports Nested objects, parent/child docs

Joins

 Events relate to line-items

 Amazon decreased price

 Pixmania is running a promotion

 Need to group by Product

 Use key/value store

 Get full Product document

 Modify it, write it back

 Enqueue indexing instruction

Indexer Event Q
3 3 5

1 4

1

2

1
3

4
Index Q

Key/value

store

5

Where to join?

 elasticsearch

 Consider performance

 Depends how data is structured/indexed (e.g. parent/child)

 Compression, collisions

 In-memory cache (e.g. Memcache)

 Persistent storage (e.g. Cassandra or Mongo)

 Two awesome benefits

 Quickly re-index if needed

 Updates have access to the full Product data

 Serialisation is costly

Synchronisation & Concurrency

 Fault tolerance

 Code to expect missing data

 Out of sequence events

 Concurrency Control

 Apply Optimistic Concurrency Control at Mongo

 Optimise for collisions

Synchronisation & Concurrency

 Synchronisation

 Out of sequence index instructions

 elasticsearch external versioning

 Can rebuild from scratch if need to

 Consistency

 Which version is right?

 Dates

 Revision numbers from SQL

 Independent updates

Figures

 Ingestion

 20m data points/day (continuously)

 ~ 200GB

 3K msgs/second at peak

 Hardware

 SQL: 2 x 12-core, 64GB, 72-spindle SAN

 Indexing: 4 x 4-core, 8GB

 Mongo: 1 x 4-core, 16GB, 1xSSD

 Elastic: 5 x 4-core, 16GB, 1xSSD

Custom-Built

Lucene

elasticsearch

Latency 3 hours < 1 second

Bottleneck Disk (SQL) CPU

Managing Change

Key/value

store

Index_A

Client

Indexer Event Q

Alias

Index_B

Index

Index_B Index_A

Thanks

 @YannCluchey

 Concurrency Patterns with MongoDB
http://slidesha.re/YFOehF

 Consistency without Consensus
Peter Bourgon, SoundCloud
http://bit.ly/1DUAO1R

 Eventually Consistent Data Structures
Sean Cribbs, Basho
https://vimeo.com/43903960

http://slidesha.re/YFOehF
http://slidesha.re/YFOehF
http://bit.ly/1DUAO1R
http://bit.ly/1DUAO1R
https://vimeo.com/43903960
https://vimeo.com/43903960

