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Online Pricing Intelligence 

1. Gather data from 500+ of eCommerce sites 

2. Organise into high quality market view 

3. Competitive intelligence tools 
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Custom Crawler 

 Parse web content 

 Discover product data 

 Tracking 20m products 

 Daily+ 
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Database 

Processing, Storage 

 Enrichment 

 Persistent Storage 

 Product Catalogue 

 + time series data 

Processing 



Database 

Thing #1 - Detection 

 Identify distinct products 

 Automated information retrieval 

 Lucene + custom index builder 

 Continuous process 

 (Humans for QA) 
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Thing #2 - BI Tools 

 Web Applications 

 Also based on Lucene 

 Batch index build process 

 Per-customer indexes 
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Thing #1 - Pain 

 Continuously indexing 

 Track changes, read back out to index 

 Drain on performance 

 Latency, coping with peaks 

 Full rebuild for index schema change 

or inconsistencies 

 Full rebuild doesn’t scale well… 

 Unnecessary work..? 
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Customer 

Index 2 

Thing #2 - Pain 

 Twice daily batch rebuild, per customer 

 Very slow 

 Moar customers? 

 Moar data? 

 Moar often? 

 Data set too complex, 

keeps changing 

 Index shipping 

 Moar web servers? 
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Pain Points 

 As data, customers scale, 

processes slow down 

 Adapting to change 

 Easy to layer on, 

hard to make fundamental changes 

 Read vs write concerns 

 Database Maintenance 
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Goals 

Eliminate latencies 

 Improve scalability 

 Improve availability 

Something achievable 

 

Your mileage will vary 



elasticsearch 

 Open source, distributed search engine 

 Based on Lucene, fully featured API 

 Querying, filtering, aggregation 

 Text processing / IR 

 Schema-free 

 Yummy 

(real-time, sharding, highly available) 

 

 Silver bullets not included 
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Our New Pipeline 
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Event Hooks 

 Messages fired OnCreate.. and OnUpdate 

 Payload contains everything needed for indexing 

 The data 

 Keys (still mastered in SQL) 

 Versioning 

 

 Sender has all the information already 

 

 Use RabbitMQ to control event message flow 

 Messages are durable 



Indexing Strategy 

 RESTful API (HTTP, Thrift, Memcache) 

 Use bulk methods 

 They support percolation 

 

 Rivers (pull) 

 RabbitMQ River 

 JDBC River 

 Mongo/Couch/etc. River 

 

 Logstash 

Index Q 
Indexer 

Event Q 



Model Your Data 

 What’s in your documents? 

 Database = Index 

        Table = Type   ...? 

 

 Start backwards 

 What do your applications need? 

 How will they need to query the data? 

 

 Prototyping! Fail quickly! 

 elasticsearch supports Nested objects, parent/child docs 



Joins 

 Events relate to line-items 

 Amazon decreased price 

 Pixmania is running a promotion 

 Need to group by Product 

 Use key/value store 

 Get full Product document 

 Modify it, write it back 

 Enqueue indexing instruction 
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Where to join? 

 elasticsearch 

 Consider performance 

 Depends how data is structured/indexed (e.g. parent/child) 

 Compression, collisions 

 In-memory cache (e.g. Memcache) 

 Persistent storage (e.g. Cassandra or Mongo) 

 Two awesome benefits 

 Quickly re-index if needed 

 Updates have access to the full Product data 

 Serialisation is costly 



Synchronisation & Concurrency 

 Fault tolerance 

 Code to expect missing data 

 Out of sequence events 

 

 Concurrency Control 

 Apply Optimistic Concurrency Control at Mongo 

 Optimise for collisions 

 



Synchronisation & Concurrency 

 Synchronisation 

 Out of sequence index instructions 

 elasticsearch external versioning 

 Can rebuild from scratch if need to 

 

 Consistency 

 Which version is right? 

 Dates 

 Revision numbers from SQL 

 Independent updates 

 



Figures 

 Ingestion 

 20m data points/day (continuously) 

 ~ 200GB 

 3K msgs/second at peak 

 

 Hardware 

 SQL:  2 x 12-core, 64GB, 72-spindle SAN 

 Indexing: 4 x 4-core, 8GB 

 Mongo: 1 x 4-core, 16GB, 1xSSD 

 Elastic: 5 x 4-core, 16GB, 1xSSD 

Custom-Built 

Lucene 

elasticsearch 

Latency 3 hours < 1 second 

Bottleneck Disk (SQL) CPU 



Managing Change 
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Thanks 

 @YannCluchey 

 

 Concurrency Patterns with MongoDB 
http://slidesha.re/YFOehF 

 

 Consistency without Consensus 
Peter Bourgon, SoundCloud 
http://bit.ly/1DUAO1R 

 

 Eventually Consistent Data Structures 
Sean Cribbs, Basho 
https://vimeo.com/43903960 
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