
2011/10/07

1

Bedarra Research Labs Confidential ©2006-2011 Bedarra Research Labs
Page 1 Bedarra Research Labs ©2006-2011 Bedarra Research Labs

Bedarra Research Labs

Bedarra Research Labs Confidential

Think? Compute! See!!

End User Programming for Thinkers
Dave Thomas

YOW! Conference, Bedarra Research Labs,

Queensland Uni of Technology and Carleton University
Ottawa, Canada

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 2

Think? Compute! See!!

End User Programming for Thinkers
 Thinkers

● Personas
● Computational & Data Environments

 End User Programming
● Models
● Limitations especially for HPC

 Example Collaborative Analytics

– Virtual Execution Environment

– EUP Facilities

– Demo (time permitting)

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 3

Thinker Persona (Computational Scientists)

● Domain Experts in Science, Engineering, Business, Arts for
whom high performance computation is now an essential tool
discovery and design.

● Model based exploratory programming with a strong emphasis
on hypothesis formulation and visualization.

● Minimal training in CS/SE and associated languages, tools and
practices. Reject software industry Agile + OO

● Willing to use any combination of tools to get their work done.
Eg, FORTRAN, C++ library codes, Python, R, Matlab …

● Data Scientists = Big Data + HPC (cloud/clusters/grids)

2011/10/07

2

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 4

Thinker Compute Alternatives

1. Large Distributed Network of Small Machines

● (2G 2 - 4 cores) * 100s cpus and/or gpus

● simple disks with GFS + Map Reduce ...

2. Small Clusters of Large Machines

● (128G - 1TB + 4 - many cores) * 10s of cpus/gpus

● high performance RAID with hardware compression

● column stores

● SQL + functions

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 5

Thinker Data Environment

● Data Volumes in 10s of TB to 100 PBs
● Memory, SSD and RAID Disk Array Based Column Stores,

Distributed Data Sets and Databases

● Software and Hardware data compression; encryption

● Streams/Samples for huge data sets

● Examples

� Main Memory DB; NoSQL DB (Triple Stores); Column Stores,
Vector DB; Streaming DB; GraphDB...

� MemCache, Oracle Coherence: RIAK, Mongo, Couch DB,
Amazon Simple DB; Aster, Greenplum, Veritica, Neo4J

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 6

Unique Data Properties & Operations

● Time (Millenniums to Nanoseconds) and Timespans

● Missing Data , Out of Range Data, Uncertainty (45 % likely,
highly unlikely)

● Operations over Huge Tables, Dictionaries, Lists, Arrays

● Visualization of Big Data

● Charts and Plots; Trees and Graphs ;Maps in 2 &3 D, GIS,
Human Body, Heat Maps...

● Examples - InfoViz, Graphviz, R ggplot,
Tableau...Processing (Processing.org, Processing.js)

2011/10/07

3

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 7

Data Intensive Computing

Applied Functional Programming (aka Super CRUD)
SQL + Functions + Streams – e.g. Greenplum …
NoSQL Databases – Dictionaries on Steroids (Big Table, CouchDB…)
Map Reduce, Comprehensions
Hybrid JVM, CLR/LINQ functional languages F#, Scala, Clojure
Vector Functional Programming
Graph Databases
GPUs …

All roads lead to some form of Functional CRUD

• Massive storage and processing enables living in a click/tic stream
processing of raw un-normalized data - RFIDs, Clicks, Tics,
Customer interactions, Sensor Events …

• Smart Algorithms which stream over data sets - Customer Life Time
Value, Recommendation Engines, Web Analytics, Real-time Financials,
Network and Sensor Monitoring, Complex Event Processing

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 8

But you need to be a FP wizard to live here?!

Needs Solution

Planet FP
Just want my
application!

Professor
Lambda

Just eat your
monads and defer all

computations!

Comprehensions, Folds, Combinators, Monads,
Closures

Math!?

Only 10 lines with
300 chars!

High Barrier
Languages

Want to Be
Clousrets

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 9

End User Programming Models

● Textual or Visual(boxes and arrows) DSL

● Programming by Example (Abstract and Concrete)

● Programming By Demonstration

● Tables (Spreadsheets, Decision tables, State Tables)

● Forms and CRUD/SQL

● Rule/Deductive Programming

● Mathematical Programming

● Examples - Numpy, R, MatLab; LabView, Prograph, Google App Inventor,
Yahoo Pipes; QBE,OBE,SBA; Tinker, Stage Cast, MSQuery; State Charts;
4GL - CoolGen, Mapper, Power House, PowerBuilder, Delphi, OutSystems,
SQL; Expert Systems, Jrules; Agent Sheets, Datalog, Mathematical, R ...

2011/10/07

4

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 10 © 2003, 2004 Bedarra Research Labs. All rights reserved.

● Very productive for specific applications

● Scaling problematic forcing often users to migrate to
a “real” programming language

– Limited Interoperability with outside world
– 32 bit (limited data size) and single process (limited concurrency)
– Restricted programming model (limited data types and operations

e.g. SQL, OLAP, Spreadsheets)

Is EUP only for Wimps? hence HPC only
for Wizards? !

EUP Experiences – Been There, Done That

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 11

End User Programming for Thinkers

Democratize High Performance Domain Oriented
Programming
● Counter the believe that EUP can't be used for hard problems

● Need safe productive high level languages which deliver
performance

● Thinker Environment Programming Two Level Model

Big Data EUP Examples

Apache Cascading, Pig, Hive

Ripe for R

Google Sawzall

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 12

Collaborative Analytics – A Thinker Example

● Analytic team consisting of cross jurisdictional
domain experts assembled on demand for a critical
situation

● Analysts need to be able work across big data in
clouds to embedded sensors

● Analysts must be able to work visually as well as
texturally to rapidly explore alternatives

● Fine grained version management, security
controlled sharing and annotation of all assets
(cells, images,...) Workflow versioning for big data
computations (enables redo)

2011/10/07

5

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 13

What Virtual Execution Environment (VEE)?

What programming model and runtime is well suited to
Interactive model based computation?

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 14

Top Down VEE Design Choices

1. A few elegant and simple abstractions
2. A dynamic object model and garbage collector
3. Everything is an object (list , set)...
● !! the first N < 5 implementations will suck in space and

time
● !! interop with native HW will trail HW
● !! implementers will spend decades trying to make

elegant => fast
4. Language is extended by libraries in the same language
● !! the libraries will be bloated and of variable quality, with

changing APIs …

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 15

Bottom Up VEE Design Choices

Vector Functional VEE

1. Needs to be fast ! Hence needs to be close to the metal in
terms of runtime types and data
structures

2. Needs to be small (compact)

3. Needs basic safety Hence must pay for nulls, index range
checking...

4. Needs to support massive data Hence needs to be value versus
reference based and needs to support
data parallel and actor concurrency5. Needs scalable concurrency

6. It will be a challenge to design
a normal developer language
(i.e. the GPU problem)

Hence needs an expert language and
DSLs for normal users

2011/10/07

6

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 16

Why Functional Vector VMs Kick Object VMs

● Array VMs vs. OVMs

● No need for boxing and unboxing! … Simpler GC

● Support for all native machine types

● Virtual machine is smaller… can easily be held in instruction and data caches

● Values are shared until modified

● Arrays are Column Stores =>Table is a set of columns

● Reduces the impedance between Objects and Records

● Vectors are trivially serialized

● Vectors are machine values

● Vector operations stream data through caches

● Array libraries use efficient algorithms code at machine level

● Arrays take less space than object collections

● Data parallelism is easily implemented

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 17

APL –The first array language

A Programming Language – Ken Iverson

Think in Collections (Arrays in APL, later any) J, NIAL, K..
No Stinking Loops, Ultra Concise Programs
Operator (later function composition)

I want this on my mobile and iPad!

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 18

Transition to High Barrier Languages

Newbie

Competent

Proficient

Expert

Newbie

Competent

Proficient

Expert

Technology S Curves

Leap of faith!

Web - JS/Ruby

OO -C#, Java

Procedural - C,C++

Scheme/Clojure, Erlang, J/K, Haskell,
Scala, OCaml/F#, Linq, Datalog,

Change Curve

This will great!

This Sucks

Aha!

Kicks Butt!
And Now For
Something
Completely
Different!

2011/10/07

7

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 19

CARE Analyst and Expert Programming Models

• 50+:1 of ratio of analysts to expert developers
• Experts surface new functionality to analysts as DSL library extensions

Expert Programming Model

• Wide Spectrum Functional Vector Language
• Full Interoperable with current technologies: ODBC, Java, C#, C++, Web

Analysts Application Programming Model
• Wide Spectrum DSLs (SQL, Sheets & Tables, Boxes and Arrows, ...)
• Narrow Domain Specific DSL (IP packets, finance, geographic, cultural ...)
• Leverage existing standards and user models
• Interoperable with R, MatLab, MS Office...

CARE Core Platform
,column store, core, Core Libraries, platform interop ….
• Virtual Execution Environment (VEE) – High Performance Vector Functional Runtime

New Functionality

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 20

Collaborative Interactive Development Environment (IDE)

Analytic Tools (AT)

Library and Runtime Environment (VEE)

Big Data Spreadsheet

Virtual Execution Environment (VEE) – High Performance Vector Functional Runtime

Dynamic Query

Dynamic Visualization

Reporting

Decision Tables

ACH

R & MatLab Interop Visual Query Visual Programming

Concept Mapping

Text Editor

Table Editor

Visual EditorRefactoringHelper Functions

Personal Workspaces

Version Management

Data Inspectors

Visual Inspectors

Pluggable Visuals

DSL ToolingFine Grain Versioning

Workflow Versioning

Granular Security

Provisioning

(c) Bedarra Research Labs
2010Databases Streaming Feeds Data Simulators Open InternetOntologies Knowledge Bases

CARE - An Exploratory Colaborative Analytics Environment

Distributed CARE

Embedded CARE

Policy Security Engine

Dempster Schafer

State Tables

Actors

Data Flow Constraints

Collection Types

Native Types

Parallel Data Ops

Pattern Matching

Table Programming

Uniform File I/O

TCP/IP, UNIX, IPC

ODBC, JDBC, XML

Web, JSON, REST

C/C++ Callout/in

Protocol Buffer, XMPPFunctional SQL

High Performance
Column Store

Compression

Streaming

Custom DSLs

SURF

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 21

Analyst Visual IDE Concept Maps and Sheets

2011/10/07

8

Bedarra Research Labs ©2006-2011 Bedarra Research Labs
Page 22

Analyst IDE - Visual Inspection and Refinement

Bedarra Research Labs Confidential ©2006-2011 Bedarra Research Labs
Page 23 Bedarra Research Labs ©2006-2011 Bedarra Research Labs

Demo

© 2006-2010 Bedarra Research Labs. All rights reserved.

Bedarra Research Labs

Bedarra Research Labs Confidential ©2006-2011 Bedarra Research Labs
Page 24 Bedarra Research Labs ©2006-2011 Bedarra Research Labs

Thanks!

© 2006-2010 Bedarra Research Labs. All rights reserved.

Bedarra Research Labs

