
DYNAMIC: DON’T BE AFRAID

Hadi Hariri

JetBrains

The What, the Why, the How

Agenda

A tale as old as time…

A Tale as Old as Time...

Static vs Dynamic

Static vs Dynamic

Blog

Posts

Discussion

Threads

Blog Posts

and more blog

posts

• Types can be implicit or explicit (var)

• Compiler Safety

• Early Binding

In the Static World

• Types defined at runtime

• No Compiler (Usually)

• Late Binding

• Interpreted (Not always)

In a Dynamic World

What Dynamic Developers think of
Static Developers…

I need my compiler!

What Static Developers think of
Dynamic Developers…

http://nimblepros.com/products/software-craftsmanship-2012-calendar.aspx

"You cannot build serious
business applications in

dynamic languages"

They both have Good and Bad
Things

DLR & C# 4

• dynamic keyword

• Classes/Binders and interfaces to work with

dynamic types

C# added...

Hosting API Debugging API

Interop Binders
Dynamic

Objects

Call-Site

Caching
Expressions

Expression Compiler

/ Interpreter
IL Code Generator

DLR added…

DLR

IronRuby IronPython C# VB.NET

Bindings

.NET Ruby Python Office

The Big Picture

http://www.flickr.com/photos/bitjungle

GET YOUR STINKING

DYNAMIC TYPES OFF

OF MY STATIC

LANGUAGE

IS THERE A NEED?

Readability

Interoperability

Interoperability with other languages

• IronPython

• Interpreted

• Can be compiled

• IronRuby

• Interpreted

• Your own language

DEMO

TALKING RUBY

Interoperability

• Talking to COM

• Need a type-library beforehand

• Use Method Invocation

DEMO

TALKING COM

The Case of the DTO

Creating Dynamic Objects in C#

Options

• ExpandObject

• DynamicObject

• IDynamicMetaObjectProvider

Expando Object

• Built-in Dynamic Object. Works out of the box

• Benefits over Dictionary

• More Fluent

• Support for Methods

• Supports Hierarchies

• Implements INotifyPropertyChanged

• Limitations
• Index Access

DEMO

ON THE FLY: BASICS OF DYNAMIC

DEMO

EXPANDOS

DynamicObject

• Moving Beyond an Expando

• Built-in class which implements
IDynamicMetaObjectProvider

• Allows easy creation of Dynamic types

DEMO

MVC – V IEWBAG, DYNAMICOBJECTSIMPLE

IDynamicMetaObjectProvider

• Meta Object that performs binding

• Allows decoupling from class

• Uses DLR Expressions

• Returns DynamicObject

DEMO

DYNAMICPROVIDER

Undetermined API

Aspects of MetaProgramming

• Adding / Removing Methods

• Creating Instance Methods

• Creating Static / Class Methods

• Query Classes

DEMO

DYNAMICMETHODMISSING – S IMPLE DATA

Consuming the ever-changing

DEMO

CONSUMINGJSON

DSL's and Fluent API's

A QUICK LOOK UNDER THE HOOD…

The backbone of dynamic support

DLR

Language Semantics

via DLR EXpression

Define Late Binding

Logic

DLR Expression

• Superset of Linq.Expression

• Common to multiple Languages

• DLR Expression is to DLR Languages what IL
is to CLR languages

C# VB.NET

IL

CLR

IronPython IronRuby

DLR Expression

DLR Runtime

Late Binding

• We only know the types at runtime

• We have to figure out how to call those
methods at runtime

• It’s not embedded in the “IL”

• It’s potentially slower

Late Binding

• Using Binders and Call Sites

• Using Dynamic Expression (uses former
internally)

Late Binding

DEMO

DYNAMICCONVERSION

SUMMING UP…

The Disadvantages

• There is no compile type-checking*

• Potentially slower (even with caching)

• There is no Intellisense*

* Partially incorrect – It’s about the tooling

Reasons to not not use dynamic

Reasons to not not use dynamic

• There’s no compiler

• There’s no intellisense (Emphasis on Unit Tests)

• You shouldn’t mix dynamic and static languages

Reasons to use dynamic

Reasons to use Dynamic

• Interoperability
• COM

• Consuming Dynamic Languages
• Ruby

• JavaScript

• Fluent API’s and DSL

• Consuming the *unknown*

• Dynamic Structures

• Avoiding unnecessary “class explosion”

Thank you

