
Case study: d60 Raptor
smartAdvisor

Jan Neerbek

Alexandra Institute

2

Agenda

· d60: A cloud/data mining case

· Cloud

· Data Mining

· Market Basket Analysis

· Large data sets

· Our solution

3

Alexandra Institute

 The Alexandra Institute is a non-profit

company that works with application-

oriented IT research.

 Focus is pervasive computing, and we

activate the business potential of our

members and customers through research-

based userdriven innovation.

4

The case: d60

· Danish company

· A similar products recommendation engine

· d60 was outgrowing their servers (late 2010)

· They saw a potential in moving to Azure

5

The setup

Internet
Webshops

Log shopping
patterns

Do data mining

Product
Recommendations

6

The cloud potential

· Elasticity

· No upfront server cost

· Cheaper licenses

· Faster calculations

7

Challenges

· No SQL Server Analysis Services (SSAS)

· Small compute nodes

· Partioned database (50GB)

· SQL server ingress/outgress access is

slow

8

The cloud

Node

Node

Node

Node

Node

Node Node

9

The cloud and services

Node

Node

Node

Node

Node

Node Node

Data layer
service

Messaging
Service

10

Data layer service

· Application specific (schema/layout)

· SQL, table or other

· Easy a bottleneck

· Can be difficult to scale

Data layer
service

11

Messaging service

Task Queues

· Standard data structure

· Build-in ordering (FIFO)

· Can be scaled

· Good for asynchronous messages

Messaging
Service

12

13

Data mining

Data mining is the use of automated data analysis
techniques to uncover relationships among data
items

Market basket analysis is a data mining
technique that discovers co-occurrence
relationships among activities performed by
specific individuals

[about.com/wikipedia.org]

14

Market basket analysis

Customer1

Avocado

Milk

Butter

Potatoes

Customer2

Milk

Diapers

Avocado

Beer

Customer3

Beef

Lemons

Beer

Chips

Customer4

Cereal

Beer

Beef

Diapers

15

Market basket analysis

Customer1

Avocado

Milk

Butter

Potatoes

Customer2

Milk

Diapers

Avocado

Beer

Customer3

Beef

Lemons

Beer

Chips

Customer4

Cereal

Beer

Beef

Diapers

Itemset (Diapers, Beer) occur 50%

Frequency threshold parameter
Find as many frequent itemsets as possible

16

Market basket analysis

Popular effective algorithm: FP-growth 

Based on data structure FP-tree

Requires all data in near-memory 

Most research in distributed models has been for

cluster setups 

17

Building the FP-tree

(extends the prefix-tree structure)

Avocado

Butter

Milk

Potatoes

Customer1

Avocado

Milk

Butter

Potatoes

18

Building the FP-tree

Customer2

Milk

Diapers

Avocado

Beer

Avocado

Butter

Milk

Potatoes

19

Building the FP-tree

Customer2

Milk

Diapers

Avocado

Beer

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

20

Building the FP-tree

Customer2

Milk

Diapers

Avocado

Beer

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

21

Building the FP-tree

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

Beef

Beer

Chips

Lemon

Cereal

Diapers

22

FP-growth

Grows the frequent itemsets, recusively

FP-growth(FP-tree tree)

{

 …

 for-each (item in tree)

 count =CountOccur(tree,item);

 if (IsFrequent(count))

 {

 OutputSet(item);

 sub = tree.GetTree(tree, item);

 FP-growth(sub);

 }

23

FP-growth algorithm
Divide and Conquer

Traverse tree

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

Beef

Beer

Chips

Lemon

Cereal

Diapers

24

FP-growth algorithm
Divide and Conquer

Generate sub-trees

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

Beef

Beer

Chips

Lemon

Cereal

Diapers

25

FP-growth algorithm
Divide and Conquer

Call recursively

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

Beef

Beer

Chips

Lemon

Cereal

Diapers

Avocado

Butter Beer

Diapers

26

FP-growth algorithm

Memory usage

The FP-tree does not fit in local memory; what to

do?

· Emulate Distributed Shared Memory

27

Distributed Shared Memory?

· To add nodes is to add memory

· Works best in tightly coubled setups, with low-lantency,

high-speed networks

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Shared Memory

Network

28

FP-growth algorithm

Memory usage

The FP-tree does not fit in local memory; what to

do?

· Emulate Distributed Shared Memory

· Optimize your data structures

· Buy more RAM

· Get a good idea

29

Get a good idea

· Database scans are serial and can be

distributed

· The list of items used in the recursive calls

uniquely determines what part of data we are

looking at

30

Get a good idea

Avocado

Butter

Milk

Potatoes

Beer

Diapers

Milk

Beef

Beer

Chips

Lemon

Cereal

Diapers

Avocado

Butter Beer

Diapers

31

Get a good idea

Milk

Butter, Milk Avocado

Butter Beer

Diapers

Avocado

Avocado

Beer

Diapers,Milk
These are postfix paths

32

33

Buckets

· Use postfix paths for messaging

· Working with buckets

Transactions

Items

34

FP-growth revisited

FP-growth(FP-tree tree)

{

 …

 for-each (item in tree)

 count =CountOccur(tree,item);

 if (IsFrequent(count))

 {

 OutputSet(item);

 sub = tree.GetTree(tree, item);

 FP-growth(sub);

 }

Replaced with
postfix

Done in parallel

Done in parallel

Done in parallel

35

Communication

Node Node

Node Node

Data layer

36

Revised Communication

Node Node

Node Node

Data layer
MQ

37

Running FP-growth

Distribute buckets

Count items
(with postfix size=n)

Collect counts
(per postfix)
Call recursive

Standard FP-growth

38

Running FP-growth

Distribute buckets

Count items
(with postfix size=n)

Collect counts
(per postfix)
Call recursive

Standard FP-growth

39

Collecting what we have learned

· Message-driven work, using message-queue

· Peer-to-peer for intermediate results

· Distribute data for scalability (buckets)

· Small messages (list of items)

· Allow us to distribute FP-growth

40

Advantages

· Configurable work sizes

· Good distribution of work

· Robust against computer failure

· Fast!

41

So what about performance?

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

04:00:00

04:30:00

1 2 4 8

Message-driven FP-growth

FP-growth

Total node time

42

Thank you!

