
Case study: d60 Raptor 
smartAdvisor 

Jan Neerbek 

Alexandra Institute 



2 

 

 

Agenda 

· d60: A cloud/data mining case 

· Cloud 

· Data Mining 

· Market Basket Analysis 

· Large data sets 

· Our solution 
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Alexandra Institute 

 The Alexandra Institute is a non-profit 

company that works with application-

oriented IT research.  

 

 Focus is pervasive computing, and we 

activate the business potential of our 

members and customers through research-

based userdriven innovation.  
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The case: d60 

· Danish company 

· A similar products recommendation engine 

· d60 was outgrowing their servers (late 2010) 

· They saw a potential in moving to Azure 
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The setup 
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The cloud potential 

· Elasticity 

· No upfront server cost 

· Cheaper licenses 

· Faster calculations 
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Challenges  

· No SQL Server Analysis Services (SSAS) 

· Small compute nodes 

· Partioned database (50GB) 

· SQL server ingress/outgress access is 

slow 

 



8 

 

 

The cloud 

Node 

Node 

Node 

Node 

Node 
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The cloud and services 

Node 

Node 

Node 

Node 

Node 

Node Node 

Data layer 
service 

Messaging 
Service 
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Data layer service 

· Application specific  (schema/layout) 

· SQL, table or other 

· Easy a bottleneck 

· Can be difficult to scale 

Data layer 
service 
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Messaging service 

Task Queues 

· Standard data structure 

· Build-in ordering (FIFO) 

· Can be scaled 

· Good for asynchronous messages 

Messaging 
Service 
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Data mining 

Data mining is the use of automated data analysis 
techniques to uncover relationships among data 
items 

 

 

Market basket analysis is a data mining 
technique that discovers co-occurrence 
relationships among activities performed by 
specific individuals 

[about.com/wikipedia.org] 
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Market basket analysis 
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Market basket analysis 

Customer1 

Avocado 
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Itemset (Diapers, Beer) occur 50% 
 
Frequency threshold parameter 
Find as many frequent itemsets as possible 
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Market basket analysis 

Popular effective algorithm: FP-growth  

Based on data structure FP-tree 

Requires all data in near-memory  

Most research in distributed models has been for 

cluster setups  
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Building the FP-tree 

(extends the prefix-tree structure) 
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Building the FP-tree 
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Building the FP-tree 
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Building the FP-tree 
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Building the FP-tree 
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FP-growth 

Grows the frequent itemsets, recusively 

 

FP-growth(FP-tree tree) 

{ 

     … 

     for-each (item in tree) 

          count =CountOccur(tree,item); 

          if (IsFrequent(count)) 

          { 

               OutputSet(item); 

               sub = tree.GetTree(tree, item); 

               FP-growth(sub); 

          } 
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FP-growth algorithm 
Divide and Conquer 

Traverse tree 
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FP-growth algorithm 
Divide and Conquer 

Generate sub-trees 
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FP-growth algorithm 
Divide and Conquer 

Call recursively 
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FP-growth algorithm 

Memory usage 

The FP-tree does not fit in local memory; what to 

do? 

· Emulate Distributed Shared Memory 
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Distributed Shared Memory? 

· To add nodes is to add memory 

· Works best in tightly coubled setups, with low-lantency, 

high-speed networks 

CPU 

Memory 

CPU 
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FP-growth algorithm 

Memory usage 

The FP-tree does not fit in local memory; what to 

do? 

· Emulate Distributed Shared Memory 

· Optimize your data structures 

· Buy more RAM 

· Get a good idea 
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Get a good idea 

· Database scans are serial and can be 

distributed 

· The list of items used in the recursive calls 

uniquely determines what part of data we are 

looking at 
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Get a good idea 
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Get a good idea 

Milk 

Butter, Milk Avocado 

Butter Beer 

Diapers 

Avocado 

Avocado 

Beer 

Diapers,Milk 
These are postfix paths 
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Buckets 

· Use postfix paths for messaging 

· Working with buckets 

Transactions 

Items 
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FP-growth revisited 

FP-growth(FP-tree tree) 

{ 

     … 

     for-each (item in tree) 

          count =CountOccur(tree,item); 

          if (IsFrequent(count)) 

          { 

               OutputSet(item); 

               sub = tree.GetTree(tree, item); 

               FP-growth(sub); 

          } 

 

Replaced with 
postfix 

Done in parallel  

Done in parallel  

Done in parallel  
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Communication 

Node Node 

Node Node 

Data layer 
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Revised Communication 

Node Node 

Node Node 

Data layer 
MQ 
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Running FP-growth 

Distribute buckets 

Count items 
(with postfix size=n) 

Collect counts 
(per postfix) 
Call recursive 

Standard FP-growth 
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Running FP-growth 

Distribute buckets 

Count items 
(with postfix size=n) 

Collect counts 
(per postfix) 
Call recursive 

Standard FP-growth 
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Collecting what we have learned 

· Message-driven work, using message-queue 

· Peer-to-peer for intermediate results 

· Distribute data for scalability (buckets) 

· Small messages (list of items) 

· Allow us to distribute FP-growth 
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Advantages 

· Configurable work sizes 

· Good distribution of work 

· Robust against computer failure 

· Fast! 
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So what about performance? 
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Thank you! 


