
Embracing Concurrency
at scale

(it’s about time!)

Justin Sheehy
justin@basho.com

Concurrency Matters

"The free lunch is over."

- Herb Sutter, 2005

Concurrency Matters

"The free lunch is over."

- Herb Sutter, 2005

You got a free lunch!?

New Problems,
Old Solutions

Distributed Systems matter now more than ever ,
and we must learn from the past to build the future.

Don't do what I say. (yet)

Working at scale isn't just "more." It is different.

What is Concurrency?

concurrent: occurring at the same time

concurring: agreeing with others

Time is a Hard Problem

Einstein,
Minkowski,
Schwarzschild...

Time in Computing

Lamport, 1978 -- gave us “happened before”

Mattern, 1989 -- closer to Minkowski causality

Time is a Hard Problem

In computing, we like to pretend it’s easy.

This is a trap!

Distributed Computing is
Asynchronous Computing

Synchrony (distributed transactions) throws away
the biggest gains of being distributed!

Three Kinds of Computing

memories: at time T, I learned fact F
guesses: based on my memories, I will try G
apologies: G didn't work out, oops

- Pat Helland

There is no “Global State”

You only know about the past -- deal with it!

This sadly often means giving up on ACID.
(globally, not locally)

This is going to hurt!

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Soft State

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Soft State
Eventually-Consistent

Eventually-ConsistentEventually-Consistent

Available
Basically

Soft State
Eventually-Consistent

This is a real tradeoff -- if you make it, understand it!
(Eric Brewer, 1997)

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

You want all three, but
you can’t have them all at once.

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Distributed Transactions
(on any real network, this fails)

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Quorum Protocols &
typical Distributed Databases
(nodes outside the quorum fail)

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Sometimes allow stale data...
 ...but everything can keep going.

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

This is where leads us.BASE

Eventually-ConsistentEventually-Consistent

Available
Basically

Soft State
Eventually-Consistent

This is a real tradeoff -- if you make it, understand it!

B
A
S
E

Eventually-ConsistentEventually-Consistent

Eventually-ConsistentEventually-Consistent doesn’t mean
“not consistent”!

It also doesn't mean slow.
BASE and DIRT are not in conflict!

Sometimes you go "eventual" in order to go fast.

It just forces you to remember that
everything is probabilistic.

RPC is a scaling antipattern.
Treating remote communication like local

function calls is a fundamentally bad abstraction.

•Network can fail after call “succeeds”.
•Data copying cost can be hard to predict.
•Tricks you by working locally.

•Prevents awareness of swimlanes.
(and then failing in a real dist sys)

(and thus causes cascading failure)

Protocols vs. APIs

•Explicit understanding of boundaries.

•Better re-use and composition.

•Asynchronous reality, described accurately.

(trust boundaries, failure boundaries...)

(unintuitive but true in the large)

(see Clojure or Erlang/OTP libraries)

Successful Protocols

Kings of the Internet: DNS & HTTP

What do they have in common?

B
A
S
E

The Web

•no global state (closest: DNS root & MIME)

•well-defined caching for eventual consistency
•idempotent operations!

•loose coupling
•links instead of global relations
•no must-understands except HTTP

(the second most successful distributed system ever)

History of Scaling
The Web

HTTP

App

DB

HTTP HTTPHTTPHTTP

AppApp

Eek!
Help from "NoSQL"?

Scalable

"I can add twice as much X to get twice as much Y."

30

computers

write-throughput!

storage capacity!

map/red power!

Linearly

31

Measurement

Today’s networked world is full of
 cascading implicit and explicit SLAs

Reason about your behavior,
 but also measure it in production.

32

Measurement

In dist. sys. if you don't measure everything,
 then you’ll pick the wrong bottlenecks.

Measure your systems top to bottom, and
 correlate information cross-system.

33

Resilient

Assume that failures will happen.

Designing whole systems and components
with individual failures in mind
is a plan for predictable success.

At scale, they are ALWAYS happening.

34

Know How You Degrade

You might prevent whole system failure if
you’re lucky and good, but what happens during
partial failure?

Plan it and understand it before your users do.

35

Know How You Degrade
Plan it and understand it before your users do.

You think you know
which parts will break.

36

Know How You Degrade
Plan it and understand it before your users do.

You think you know
which parts will break.

You are wrong.

37

Harvest and Yield
harvest: a fraction

data available / complete data

yield: a probability
queries completed / q's requested

in tension with each other:
(harvest * yield) ~ constant

goal: failures cause known linear reduction to one of these

38

Harvest and Yield

traditional ACID demands 100% harvest
but success of modern applications is

often measured in yield

plan ahead, know when you care!

39

Sometimes, you will fail.

Being able to recover quickly from failure is more important than

having failures less often.

Plan it and understand it before your users do.

- John Allspaw

If you think you can prevent failure, then you aren’t developing your

ability to respond. - Paul Hammond

40

Sometimes, you will fail.

Plan it and understand it before your users do.

Applications built for scale can make recovery
either easier or harder. You get to choose.

41

two things to make it easier:

minimal, async interfaces when possible

locality of computation and reasoning

Embracing Concurrency
at scale

(it’s about time!)

Justin Sheehy
justin@basho.com

