
Crankshaft

Turbocharging the next generation of
web applications

Kasper Lund, Software engineer at Google

Overview

● Why did we introduce Crankshaft?

● Deciding when and what to optimize

● Type feedback and intermediate representation

● Deoptimization and on-stack replacement

Projects of interest

2010- Dart Open-source programming language for the web
Google, Inc.

2006-2010 V8 Open-source, high-performance JavaScript
Google, Inc.

2002-2006 OSVM Serviceable, embedded Smalltalk
Esmertec AG

2000-2002 CLDC HI High-performance Java for limited devices
Sun Microsystems, Inc.

JavaScript performance is improving

Crankshaft introduced in Chrome 10: Adaptive
optimizations driven by type-feedback

Motivation #1

Generated code kept increasing in size
and complexity

Code for optimized property access

 function f(o) { return o.x; }

compiles to

 push [ebp+0x8] ;; push object
 mov ecx,0xf712a885 ;; move key to ecx
 call LoadIC ;; call ic

Chrome 1 - code size is 14 bytes

Code for optimized property access

 function f(o) { return o.x; }

compiles to

 mov eax,[ebp+0x8] ;; load object
 test al,0x1 ;; smi check object
 jz L1 ;; go slow if not smi
 cmp [eax+0xff],0xf54d2021 ;; map check
 jnz L1 ;; go slow if different map
 L0: mov ebx,[eax+0xb] ;; load property 'x'
 ... ;; return sequence
 ...
 L1: mov ecx,0xf54db401 ;; move key to eax
 call LoadIC ;; call load ic
 test eax,0xffffffdb ;; encoded offset of map check
 mov ebx,eax ;; shuffle around registers
 mov edi,[ebp+0xf8] ;; reload function
 mov eax,[ebp+0x8] ;; reload object
 jmp L0 ;; jump to return

Chrome 6 - code size is 55 bytes

Motivation #2

Spending time on optimizing everything
led to slower web application startup

Adaptively optimizing helps startup time
Page cycler performance Gmail startup performance

Motivation #3

Improving peak JavaScript performance
required hoisting checks out of loops and

doing aggressive method inlining

Example: Trivial loop with function call

function f() {
 for (var i = 0; i < 10000; i++) {
 for (var j = 0; j < 10000; j++) {
 g();
 }
 }
}

function g() {
 // Do nothing.
}

Generated code for inner loop of f

L0: cmp esp,[0x8298a84]
 jc L3
 mov ecx,[esi+0x17]
 mov [ebp+0xf4],eax
 mov [ebp+0xf0],ebx
 push ecx
 mov ecx,0xf54047ed
 call 0xf53f5740
 mov esi,[ebp+0xfc]
 mov eax,[ebp+0xf0]
 add eax,0x2
 jo L2
 cmp eax, 0x4e20
 jnl L1
 mov ebx,eax
 mov eax,[ebp+0xf4]
 mov edi,[ebp+0xf8]
 jmp L0
L1: ...
L2: ...
L3: ...

L0: cmp ebx,0x2710
 jnl L1
 cmp esp,[0x86595fc]
 jc L2
 add ebx,0x1
 jmp L0
L1: ...
L2: ...

V8 version 2.5.9.22 V8 version 3.5.10.15 (optimized)

Crankshaft

How does it actually work?

Crankshaft in one page

● Profiles and adaptively optimizes your applications
○ Dynamically recompiles and optimizes hot functions
○ Avoids spending time optimizing infrequently used parts

● Optimizes based on type feedback from previous runs of functions

○ No need to deal with all possible input value types
○ Generates specialized, compact code which runs fast

When and what should we optimize?

● Use statistical runtime profiling to gather information
○ Optimize when we are spending too much time in code we could

speed up through aggressive optimizations

● Maintain sliding window of actively running JavaScript functions

○ Simulate a stack overflow every millisecond
○ Add samples for the top stack frames (with weights)

● Optimize functions that are hot in the sliding window on next invocation

○ Take size of the functions into account (only for large functions)
○ Start out optimizing less aggresively and then adjust thresholds

Trace from running the Richards benchmark

[marking Scheduler.schedule 0x3d1f643c for recompilation]
[optimizing: Scheduler.schedule / 3d1f643d - took 1.511 ms]
[marking runRichards 0x3d1f6130 for recompilation]
[optimizing: runRichards / 3d1f6131 - took 1.027 ms]
[marking DeviceTask.run 0x3d1f667c for recompilation]
[optimizing: DeviceTask.run / 3d1f667d - took 0.739 ms]
[marking Scheduler.suspendCurrent 0x3d1f64a8 for recompilation]
[marking HandlerTask.run 0x3d1f670c for recompilation]
[optimizing: HandlerTask.run / 3d1f670d - took 0.898 ms]
[marking Scheduler.queue 0x3d1f64cc for recompilation]
[optimizing: Scheduler.suspendCurrent / 3d1f64a9 - took 0.093 ms]
[optimizing: Scheduler.queue / 3d1f64cd - took 0.362 ms]
[marking WorkerTask.run 0x3d1f66c4 for recompilation]
[optimizing: WorkerTask.run / 3d1f66c5 - took 0.787 ms]
[marking TaskControlBlock.markAsNotHeld 0x3d1f6514 for recompilation]
[optimizing: TaskControlBlock.markAsNotHeld / 3d1f6515 - took 0.078 ms]
[marking Packet 0x3d1f622c for recompilation]
[optimizing: Packet / 3d1f622d - took 0.187 ms]

How does Crankshaft optimize?

● Classical optimizations
○ SSA-based high-level intermediate representation
○ Linear scan register allocation
○ Value range propagation
○ Global value numbering / loop-invariant code motion
○ Aggressive function inlining

● Novel approaches

○ Gathers type feedback from inline caches
○ Infers value representations (tagged, double, int32)

Optimizing based on type feedback

● Optimistically use the past to predict the future
○ Optimize based on assumptions about types
○ Guard optimized code patterns with assumption checks
○ Hoist expensive checks out of loops

● Aggressively inline field access, operations, and called methods

○ Avoid call overhead for "simple" operations
○ Preserve values in registers (less spills and restores)
○ Specialize target methods to the caller

● Improve arithmetic performance by avoiding to heap-allocate large

integers and doubles (faster operations, less GC pressure)

Value representations

● Traditionally every value in V8 has been tagged
○ Tagged pointer to heap-allocated object
○ Tagged pointer to heap-allocated boxed double
○ Tagged small integer (31 bits)

● Crankshaft splits this into three separate representations

○ Tagged - generic tagged pointer (either of the above)
○ Double - IEEE 754 representation
○ Integer - 32 bit representation

● Increases the range of values we can represent as integers and avoids

expensive boxing for doubles

Example (revisited)

function f() {
 for (var i = 0; i < 10000; i++) {
 for (var j = 0; j < 10000; j++) {
 g();
 }
 }
}

function g() {
 // Do nothing.
}

How do we optimize this?

Goal: No tagging, no overflow checks

L0: cmp ebx,0x2710
 jnl L1
 cmp esp,[0x86595fc]
 jc L2
 add ebx,0x1
 jmp L0
L1: ...
L2: ...

Generated code for inner loop of f

L0: cmp esp,[0x8298a84]
 jc L3
 mov ecx,[esi+0x17]
 mov [ebp+0xf4],eax
 mov [ebp+0xf0],ebx
 push ecx
 mov ecx,0xf54047ed
 call 0xf53f5740 ;; code: CALL_IC
 mov esi,[ebp+0xfc]
 mov eax,[ebp+0xf0]
 add eax,0x2
 jo L2
 cmp eax, 0x4e20
 jnl L1
 mov ebx,eax
 mov eax,[ebp+0xf4]
 mov edi,[ebp+0xf8]
 jmp L0
L1: ...
L2: ...
L3: ...

L0: push [esi+0x13]
 mov ecx,0x5b117639
 call 0x2f6eb2c0 ;; code: CALL_IC
 mov esi,[ebp+0xfc]
 mov eax,[ebp+0xf0]
 test al,0x1
 jz L1
 ...
L1: add eax,0x2
 jo L2
 test al,0x1
 jc L3
L2: ...
L3: mov [ebp+0xf0],eax
 cmp esp,[0x85eb5fc]
 jnc L4
 ...
L4: push [ebp+0xf0]
 mov eax,0x4e20
 pop edx
 mov ecx,edx
 or ecx,eax
 test cl,0x1
 jnc L5
 cmp edx,eax
 jl L0
L5: ...

V8 version 2.5.9.22 V8 version 3.5.10.15 (unoptimized)

Instructions for computing
 j + 1

Capturing type feedback

 ...
 add eax,0x2
 jo L2
 test al,0x1
 jc L3
L2: sub eax,0x2
 mov edx,eax
 mov eax,0x2
 call 0x2f6da520
 test al,0x11
L3: ...

Call to binary operation stub
(rewritten on demand)

Binary operation states

Uninitialized

Integers Doubles

Generic

Strings

High-level intermediate representation

function f(x, y) { return x + y; }

B0:
0 v0 block entry
1 t2 parameter 0 ; this
2 t3 parameter 1 ; x
2 t4 parameter 2 ; y
0 v8 simulate id=6 var[0] = t2 var[1] = t3 var[2] = t4
0 v9 goto B1

B1:
0 v5 block entry
1 i6 add t3 t4 !
0 v7 return i6

Introduce explicit change instructions

function f(x, y) { return x + y; }

B0:
0 v0 block entry
1 t2 parameter 0 ; this
2 t3 parameter 1 ; x
2 t4 parameter 2 ; y
0 v8 simulate id=6 var[0] = t2 var[1] = t3 var[2] = t4
0 v9 goto B1

B1:
0 v5 block entry
1 i10 change t3 t to i
1 i11 change t4 t to i
1 i6 add i10 i11
1 t12 change i6 i to t
0 v7 return t12

Adding strings instead of integers

function f(x, y) { return x + y; }

B0:
0 v0 block entry
1 t2 parameter 0 ; this
2 t3 parameter 1 ; x
2 t4 parameter 2 ; y
0 v9 simulate id=6 var[0] = t2 var[1] = t3 var[2] = t4
0 v10 goto B1

B1:
0 v5 block entry
0 t6 add* t3 t4 !
0 v7 simulate id=4 push t6
0 v8 return t6

The real key: Deoptimization

● Deoptimization lets us bail out of optimized code
○ Handle uncommon cases in unoptimized code
○ Support debugging without slow downs

● Must convert optimized activations to unoptimized ones

○ Map stack slots and registers to other stack slots
○ Update return address, frame pointer, etc
○ Box int32 and double values that are not valid smis
○ Allocate the "arguments object" if necessary

Deoptimization (continued)

Optimized
activation with
two levels of
inlining

Three separate
unoptimized
activations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On-stack replacement

● The runtime profiler marks functions for recompilation but do not
recompile them before they are re-entered
○ If your application or benchmark consists only of a single function

invocation we never get to optimize

● On-stack replacement is the opposite of deoptimization

○ Replaces unoptimized activations with the equivalent optimized
versions and sets up register state

○ Allows optimizing functions while they are running in tight loops
which mostly makes sense for benchmarks

● On-stack replacement happens at backward branches

○ Piggy backs on the stack overflow check
○ We prefer to do on-stack replacement in outer loops

Final remarks

● JavaScript performance has improved a lot over the last years
○ Lots of competitive pressure (great for the users)
○ Other vendors are experimenting with SSA-based compilation

● If you write your program in the right subset of JavaScript, there is a

very good chance it will perform really, really well

● ... but hitting the JavaScript performance sweet spot is not trivial

○ Make use of profiling to figure out where your app spends its time
○ File performance bugs (we love new benchmarks)

Thank you for listening

Any questions?

