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Overview

● Why did we introduce Crankshaft?
 
● Deciding when and what to optimize

 
● Type feedback and intermediate representation

 
● Deoptimization and on-stack replacement

 
 



Projects of interest

2010- Dart Open-source programming language for the web
Google, Inc.

 
2006-2010 V8 Open-source, high-performance JavaScript 
Google, Inc.

 
2002-2006 OSVM Serviceable, embedded Smalltalk
Esmertec AG

 
2000-2002 CLDC HI High-performance Java for limited devices
Sun Microsystems, Inc.



JavaScript performance is improving

Crankshaft introduced in Chrome 10: Adaptive 
optimizations driven by type-feedback 



Motivation #1

Generated code kept increasing in size 
and complexity



Code for optimized property access

  function f(o) { return o.x; }

 
compiles to
 
  push [ebp+0x8]       ;; push object
  mov ecx,0xf712a885   ;; move key to ecx
  call LoadIC          ;; call ic

Chrome 1 - code size is 14 bytes



Code for optimized property access

  function f(o) { return o.x; }

 
compiles to
 
      mov eax,[ebp+0x8]           ;; load object
      test al,0x1                 ;; smi check object
      jz L1                       ;; go slow if not smi
      cmp [eax+0xff],0xf54d2021   ;; map check
      jnz L1                      ;; go slow if different map
  L0: mov ebx,[eax+0xb]           ;; load property 'x'
      ...                         ;; return sequence
      ...
  L1: mov ecx,0xf54db401          ;; move key to eax
      call LoadIC                 ;; call load ic
      test eax,0xffffffdb         ;; encoded offset of map check
      mov ebx,eax                 ;; shuffle around registers
      mov edi,[ebp+0xf8]          ;; reload function
      mov eax,[ebp+0x8]           ;; reload object
      jmp L0                      ;; jump to return

 

Chrome 6 - code size is 55 bytes



Motivation #2

Spending time on optimizing everything 
led to slower web application startup



Adaptively optimizing helps startup time
Page cycler performance Gmail startup performance



Motivation #3

Improving peak JavaScript performance 
required hoisting checks out of loops and 

doing aggressive method inlining



Example: Trivial loop with function call

function f() {
  for (var i = 0; i < 10000; i++) {
    for (var j = 0; j < 10000; j++) {
      g();
    }
  }
}
 
function g() { 
  // Do nothing. 
}



Generated code for inner loop of f

L0: cmp esp,[0x8298a84]
    jc L3
    mov ecx,[esi+0x17]
    mov [ebp+0xf4],eax
    mov [ebp+0xf0],ebx
    push ecx
    mov ecx,0xf54047ed
    call 0xf53f5740 
    mov esi,[ebp+0xfc]
    mov eax,[ebp+0xf0]
    add eax,0x2
    jo L2
    cmp eax, 0x4e20
    jnl L1
    mov ebx,eax
    mov eax,[ebp+0xf4]
    mov edi,[ebp+0xf8]
    jmp L0
L1: ...
L2: ...
L3: ...

L0: cmp ebx,0x2710
    jnl L1
    cmp esp,[0x86595fc]
    jc L2
    add ebx,0x1
    jmp L0
L1: ...
L2: ...

V8 version 2.5.9.22 V8 version 3.5.10.15 (optimized)



Crankshaft

How does it actually work?



Crankshaft in one page

● Profiles and adaptively optimizes your applications
○ Dynamically recompiles and optimizes hot functions
○ Avoids spending time optimizing infrequently used parts 

 
● Optimizes based on type feedback from previous runs of functions 

○ No need to deal with all possible input value types
○ Generates specialized, compact code which runs fast



When and what should we optimize?

● Use statistical runtime profiling to gather information
○ Optimize when we are spending too much time in code we could 

speed up through aggressive optimizations
 
● Maintain sliding window of actively running JavaScript functions

○ Simulate a stack overflow every millisecond
○ Add samples for the top stack frames (with weights)

 
● Optimize functions that are hot in the sliding window on next invocation

○ Take size of the functions into account (only for large functions)
○ Start out optimizing less aggresively and then adjust thresholds

 



Trace from running the Richards benchmark

[marking Scheduler.schedule 0x3d1f643c for recompilation]
[optimizing: Scheduler.schedule / 3d1f643d - took 1.511 ms]
[marking runRichards 0x3d1f6130 for recompilation]
[optimizing: runRichards / 3d1f6131 - took 1.027 ms]
[marking DeviceTask.run 0x3d1f667c for recompilation]
[optimizing: DeviceTask.run / 3d1f667d - took 0.739 ms]
[marking Scheduler.suspendCurrent 0x3d1f64a8 for recompilation]
[marking HandlerTask.run 0x3d1f670c for recompilation]
[optimizing: HandlerTask.run / 3d1f670d - took 0.898 ms]
[marking Scheduler.queue 0x3d1f64cc for recompilation]
[optimizing: Scheduler.suspendCurrent / 3d1f64a9 - took 0.093 ms]
[optimizing: Scheduler.queue / 3d1f64cd - took 0.362 ms]
[marking WorkerTask.run 0x3d1f66c4 for recompilation]
[optimizing: WorkerTask.run / 3d1f66c5 - took 0.787 ms]
[marking TaskControlBlock.markAsNotHeld 0x3d1f6514 for recompilation]
[optimizing: TaskControlBlock.markAsNotHeld / 3d1f6515 - took 0.078 ms]
[marking Packet 0x3d1f622c for recompilation]
[optimizing: Packet / 3d1f622d - took 0.187 ms]

 
 



How does Crankshaft optimize?

● Classical optimizations
○ SSA-based high-level intermediate representation
○ Linear scan register allocation
○ Value range propagation
○ Global value numbering / loop-invariant code motion
○ Aggressive function inlining

 
● Novel approaches

○ Gathers type feedback from inline caches
○ Infers value representations (tagged, double, int32)

 



Optimizing based on type feedback

● Optimistically use the past to predict the future
○ Optimize based on assumptions about types
○ Guard optimized code patterns with assumption checks
○ Hoist expensive checks out of loops

 
● Aggressively inline field access, operations, and called methods

○ Avoid call overhead for "simple" operations
○ Preserve values in registers (less spills and restores)
○ Specialize target methods to the caller

 
● Improve arithmetic performance by avoiding to heap-allocate large 

integers and doubles (faster operations, less GC pressure) 



Value representations

● Traditionally every value in V8 has been tagged
○ Tagged pointer to heap-allocated object
○ Tagged pointer to heap-allocated boxed double
○ Tagged small integer (31 bits)

 
● Crankshaft splits this into three separate representations

○ Tagged - generic tagged pointer (either of the above)
○ Double - IEEE 754 representation
○ Integer - 32 bit representation

 
● Increases the range of values we can represent as integers and avoids 

expensive boxing for doubles
 



Example (revisited)

function f() {
  for (var i = 0; i < 10000; i++) {
    for (var j = 0; j < 10000; j++) {
      g();
    }
  }
}
 
function g() { 
  // Do nothing. 
}

How do we optimize this?



Goal: No tagging, no overflow checks

L0: cmp ebx,0x2710
    jnl L1
    cmp esp,[0x86595fc]
    jc L2
    add ebx,0x1
    jmp L0
L1: ...
L2: ...



Generated code for inner loop of f

L0: cmp esp,[0x8298a84]
    jc L3
    mov ecx,[esi+0x17]
    mov [ebp+0xf4],eax
    mov [ebp+0xf0],ebx
    push ecx
    mov ecx,0xf54047ed
    call 0xf53f5740 ;; code: CALL_IC
    mov esi,[ebp+0xfc]
    mov eax,[ebp+0xf0]
    add eax,0x2
    jo L2
    cmp eax, 0x4e20
    jnl L1
    mov ebx,eax
    mov eax,[ebp+0xf4]
    mov edi,[ebp+0xf8]
    jmp L0
L1: ...
L2: ...
L3: ...

L0: push [esi+0x13]
    mov ecx,0x5b117639
    call 0x2f6eb2c0 ;; code: CALL_IC
    mov esi,[ebp+0xfc]
    mov eax,[ebp+0xf0]
    test al,0x1
    jz L1
    ...
L1: add eax,0x2               
    jo L2
    test al,0x1
    jc L3
L2: ... 
L3: mov [ebp+0xf0],eax
    cmp esp,[0x85eb5fc]
    jnc L4
    ...
L4: push [ebp+0xf0]
    mov eax,0x4e20
    pop edx
    mov ecx,edx
    or ecx,eax
    test cl,0x1
    jnc L5
    cmp edx,eax
    jl L0
L5: ...

V8 version 2.5.9.22 V8 version 3.5.10.15 (unoptimized)

Instructions for computing
 j + 1



Capturing type feedback

    ...
    add eax,0x2
    jo L2
    test al,0x1
    jc L3
L2: sub eax,0x2
    mov edx,eax
    mov eax,0x2
    call 0x2f6da520
    test al,0x11
L3: ...

Call to binary operation stub
(rewritten on demand)



Binary operation states

Uninitialized

Integers Doubles

Generic

Strings



High-level intermediate representation

function f(x, y) { return x + y; }
 
B0:
0 v0  block entry
1 t2  parameter 0 ; this
2 t3  parameter 1 ; x
2 t4  parameter 2 ; y
0 v8  simulate id=6  var[0] = t2 var[1] = t3 var[2] = t4
0 v9  goto B1
 
B1:
0 v5  block entry
1 i6  add t3 t4 !
0 v7  return i6



Introduce explicit change instructions

function f(x, y) { return x + y; }
 
B0:
0 v0  block entry
1 t2  parameter 0 ; this
2 t3  parameter 1 ; x 
2 t4  parameter 2 ; y
0 v8  simulate id=6  var[0] = t2 var[1] = t3 var[2] = t4
0 v9  goto B1
 
B1:
0 v5  block entry
1 i10 change t3 t to i
1 i11 change t4 t to i
1 i6  add i10 i11
1 t12 change i6 i to t
0 v7  return t12
 



Adding strings instead of integers

function f(x, y) { return x + y; }
 
B0:
0 v0  block entry
1 t2  parameter 0 ; this
2 t3  parameter 1 ; x 
2 t4  parameter 2 ; y
0 v9  simulate id=6  var[0] = t2 var[1] = t3 var[2] = t4
0 v10 goto B1
 
B1:
0 v5  block entry
0 t6  add* t3 t4 !
0 v7  simulate id=4  push t6
0 v8  return t6
 



The real key: Deoptimization

● Deoptimization lets us bail out of optimized code
○ Handle uncommon cases in unoptimized code 
○ Support debugging without slow downs

 
● Must convert optimized activations to unoptimized ones

○ Map stack slots and registers to other stack slots
○ Update return address, frame pointer, etc
○ Box int32 and double values that are not valid smis
○ Allocate the "arguments object" if necessary

 



Deoptimization (continued)

Optimized 
activation with 
two levels of 
inlining

Three separate 
unoptimized 
activations
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On-stack replacement

● The runtime profiler marks functions for recompilation but do not 
recompile them before they are re-entered
○ If your application or benchmark consists only of a single function 

invocation we never get to optimize
 
● On-stack replacement is the opposite of deoptimization

○ Replaces unoptimized activations with the equivalent optimized 
versions and sets up register state

○ Allows optimizing functions while they are running in tight loops 
which mostly makes sense for benchmarks

 
● On-stack replacement happens at backward branches

○ Piggy backs on the stack overflow check
○ We prefer to do on-stack replacement in outer loops

 



Final remarks

● JavaScript performance has improved a lot over the last years
○ Lots of competitive pressure (great for the users)
○ Other vendors are experimenting with SSA-based compilation

 
● If you write your program in the right subset of JavaScript, there is a 

very good chance it will perform really, really well
 
● ... but hitting the JavaScript performance sweet spot is not trivial

○ Make use of profiling to figure out where your app spends its time
○ File performance bugs (we love new benchmarks)



Thank you for listening

Any questions?


