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Agenda
• Why unit tests are not enough

• Characteristics of good tests scenarios

• The vision: an Executable Specification 

• The tools we can use

• Tool demo

• Tips for functional testing

• What can go wrong 
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A Fairy Tale

• Little John and the Air Balloons
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Customer not satisfied
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What’s covered

test scenarios

automation
layer

(glue code)

application

test tool

unit/
integration 

tests

functional testing,
acceptance testing,
specification by example 
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Test scenarios should...

• speak the customer’s language
• cover only the important aspects
• be complete and realistic examples
• be self explaining

• NOT be scripts!
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Test scenarios should...

•speak the customer’s language
‣ Uses business terms

‣ About business functionality not SW design 

‣ Ideally customer should be able 
to extend and change

‣ Used for communication and clarification 

- Leading to a shared understanding

- Spot inconsistencies
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Test scenarios should...

•cover only the important aspects
‣ Hide technical and implementation details

‣ Only business related aspects 

‣ Do not cover all edge & corner cases

- We still have testers 

- We have lots of unit tests, too
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Test scenarios should...

•be complete and realistic example
‣ Combinations of parameters 

and expected outputs

‣ Using real data helps
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Test scenarios should...

•be self explaining
‣ Understandable for users 

with domain knowledge

‣ All & only important information 

‣ Explaining underlying logic & business rules

‣ Make default values explicit 
when relevant for business logic  
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Test scenarios should...
•NOT be scripts
‣ Describe what instead of how

‣ Don’t make the user work backward from single 
steps to understand what is illustrated 

‣ Scripts will cost a lot of time in the long term

- Difficult to understand

- Reason for test failure is difficult to find

- Higher maintenance, UI & Workflows change 
more often than business rules 
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The vision: 
an Executable Specification 

• Frequently validated
• Reliable information about system functionality
• Easy to read and understand
• Well organized and easy accessible
• Updated when system functionality changes  
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Tools for functional 
testing should allow...

• to formulate test scenarios in the 
appropriate abstraction/language 

• to connect to the system under test at 
any layer or API

• to use the VCS of your choice
• to be easily integrated into your CI/

Build
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Tools to consider

• Keyword- / table-centric frameworks
‣ FitNesse, Robot Framework, Twist

• Behaviour-Driven-Development tools
‣ Cucumber, JBehave, EasyB

• Free text tools
‣ Concordion
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Demo

•Source code is on github:
‣ https://github.com/mklose/goto2011aar
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Hide technical details

• Use the testing tool's set up / tear down / 
abstraction mechanisms sparingly

• Write dedicated fixture code which does 
the complicated set up
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Choose the appropriate 
"point of attac"

Business Facade

UI

AppModel

View

Persistence

Credit Rules

customer type monthly 
turnover

overdraft?

Private 2500 7500
Private 1200 5000
Private 99 0

Business 25000 25000

Business 50000 25000 expected
50000 actual

backdoor
Domain

Customer

Account

CreditRules
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Rules for Automation 
through the User Interface

• Rule 1: Never automate through the UI
‣ UI changes more often => Brittle tests

‣ UI automation is technically complex

‣ UI automation is slow
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Rules for Automation 
through the User Interface

• Rule 2: Only automate through the UI 
in case of emergency
‣ Sometimes necessary to build customer 

trust in test automation

‣ Abstract the UI away

‣ Be aware of what you're missing out on
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Decouple from systems 
not under your control

• You cannot reliably include 
external (test) systems in your 
regression testing

• Use an additional set of tests for 
checking real collaboration with 
external systems
‣ Usually started by hand
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Organization of Tests
• Goals
‣ I want to see the state of current features at a 

single glance

‣ I want to organize all test scenarios in a 
consistent manner

• How to reach both goals 
‣ Organize test scenarios for current work by 

stories/features

‣ Reorganize regression tests by functional area

21



What can go wrong ...

• No close collaboration between 
developers, testers & domain experts

• Abuse of acceptance tests as 
replacement for thorough unit testing

• Neglecting clean up, refactoring and 
rework of acceptance tests

➡ It's all about communication!
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Given a birthday balloon with a face on it
When you hang it to the ceiling
Then the face is smiling friendly
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• Kudos goes to @johanneslink
‣ shirt http://605644.spreadshirt.de/

• global-day-of-coderetreat Sat, Dec 3, 2011
https://github.com/coreyhaines/coderetreat/wiki/Cities

‣ Bielefeld*, Germany too
*and yes it exists!

Nodes
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