
Unit Tests Are Not Enough
Practical Functional Testing in Java

Martin Klose
klose brothers

martin.klose@klosebrothers.de
@martinklose

1

mailto:martin.klose@klosebrothers.de
mailto:martin.klose@klosebrothers.de

Agenda
• Why unit tests are not enough

• Characteristics of good tests scenarios

• The vision: an Executable Specification

• The tools we can use

• Tool demo

• Tips for functional testing

• What can go wrong

2

A Fairy Tale

• Little John and the Air Balloons

3

Customer not satisfied

4

What’s covered

test scenarios

automation
layer

(glue code)

application

test tool

unit/
integration

tests

functional testing,
acceptance testing,
specification by example

5

Test scenarios should...

• speak the customer’s language
• cover only the important aspects
• be complete and realistic examples
• be self explaining

• NOT be scripts!

6

Test scenarios should...

•speak the customer’s language
‣ Uses business terms

‣ About business functionality not SW design

‣ Ideally customer should be able
to extend and change

‣ Used for communication and clarification

- Leading to a shared understanding

- Spot inconsistencies

7

Test scenarios should...

•cover only the important aspects
‣ Hide technical and implementation details

‣ Only business related aspects

‣ Do not cover all edge & corner cases

- We still have testers

- We have lots of unit tests, too

8

Test scenarios should...

•be complete and realistic example
‣ Combinations of parameters

and expected outputs

‣ Using real data helps

9

Test scenarios should...

•be self explaining
‣ Understandable for users

with domain knowledge

‣ All & only important information

‣ Explaining underlying logic & business rules

‣ Make default values explicit
when relevant for business logic

10

Test scenarios should...
•NOT be scripts
‣ Describe what instead of how

‣ Don’t make the user work backward from single
steps to understand what is illustrated

‣ Scripts will cost a lot of time in the long term

- Difficult to understand

- Reason for test failure is difficult to find

- Higher maintenance, UI & Workflows change
more often than business rules

11

The vision:
an Executable Specification

• Frequently validated
• Reliable information about system functionality
• Easy to read and understand
• Well organized and easy accessible
• Updated when system functionality changes

12

Tools for functional
testing should allow...

• to formulate test scenarios in the
appropriate abstraction/language

• to connect to the system under test at
any layer or API

• to use the VCS of your choice
• to be easily integrated into your CI/

Build

13

Tools to consider

• Keyword- / table-centric frameworks
‣ FitNesse, Robot Framework, Twist

• Behaviour-Driven-Development tools
‣ Cucumber, JBehave, EasyB

• Free text tools
‣ Concordion

14

Demo

•Source code is on github:
‣ https://github.com/mklose/goto2011aar

15

https://github.com/mklose/goto2011aar
https://github.com/mklose/goto2011aar

Hide technical details

• Use the testing tool's set up / tear down /
abstraction mechanisms sparingly

• Write dedicated fixture code which does
the complicated set up

16

Choose the appropriate
"point of attac"

Business Facade

UI

AppModel

View

Persistence

Credit Rules

customer type monthly
turnover

overdraft?

Private 2500 7500
Private 1200 5000
Private 99 0

Business 25000 25000

Business 50000 25000 expected
50000 actual

backdoor
Domain

Customer

Account

CreditRules

17

Rules for Automation
through the User Interface

• Rule 1: Never automate through the UI
‣ UI changes more often => Brittle tests

‣ UI automation is technically complex

‣ UI automation is slow

18

Rules for Automation
through the User Interface

• Rule 2: Only automate through the UI
in case of emergency
‣ Sometimes necessary to build customer

trust in test automation

‣ Abstract the UI away

‣ Be aware of what you're missing out on

19

Decouple from systems
not under your control

• You cannot reliably include
external (test) systems in your
regression testing

• Use an additional set of tests for
checking real collaboration with
external systems
‣ Usually started by hand

20

Organization of Tests
• Goals
‣ I want to see the state of current features at a

single glance

‣ I want to organize all test scenarios in a
consistent manner

• How to reach both goals
‣ Organize test scenarios for current work by

stories/features

‣ Reorganize regression tests by functional area

21

What can go wrong ...

• No close collaboration between
developers, testers & domain experts

• Abuse of acceptance tests as
replacement for thorough unit testing

• Neglecting clean up, refactoring and
rework of acceptance tests

➡ It's all about communication!

22

Given a birthday balloon with a face on it
When you hang it to the ceiling
Then the face is smiling friendly

23

• Kudos goes to @johanneslink
‣ shirt http://605644.spreadshirt.de/

• global-day-of-coderetreat Sat, Dec 3, 2011
https://github.com/coreyhaines/coderetreat/wiki/Cities

‣ Bielefeld*, Germany too
*and yes it exists!

Nodes

24

http://605644.spreadshirt.de
http://605644.spreadshirt.de
https://github.com/coreyhaines/coderetreat/wiki/Cities
https://github.com/coreyhaines/coderetreat/wiki/Cities

References

• Gojko Adzic: Specification by Example,How
Successful Teams Deliver the Right
Software

• Cunningham & Mugridge: FIT for
Developing Software: Framework for
Integrated Tests

25

