Magazine vol-2- issue 1. 2012

Polygot Persistence -

JH X

IFour Principles of Low-Risk Software Releases

Making Sense of Connected Data with Neo4.)

Portfolio Kanban

Grace: an open-source, object-oriented programming language for eclucation

con

goto magazine 2012

Dear GOTO Community,

We can’t stand the wait until GOTO Aarhus 2012, and
we know that our speakers have a lot more to offer than
the talks they give at the conferences, so why wait until
October? Thus we decided to launch the second volume
of the GOTO Conference Magazine to unveil insights

from our GOTO Speaker community.

When we asked for input from speakers for this maga-
zine, we were overwhelmed with the quality and the
breadth of the material we received. But why? It just
reflects what GOTO Conferences are all about. We
strive to create breadth in our technical program at the
conferences, not just one technology, never just one side

of things.

Along with the breadth of technology, many of the case
stories at the conference show how technologies and
processes can be combined and used simultaneously. The
logo of this year’s GOTO Aarhus Conference visual-

izes this perfectly; like a machine that cannot work if
one gear is missing, and this is in line with our vision of
today’s developers. If you choose to focus on only one
aspect, you lose a lot of the strength you could have as a

well-rounded developer.

We hope you enjoy reading the articles and viewing
the interviews in this version of the GOTO Conference

Magazine and we will release the next version in the fall

ents;

01. Welcome to the goto magazine vol2, issue 1, 2012

04. Polygot Persistence / Martin Fowler. Pramod Sadalage
10. IFour Principles of .ow-Risk Software Releases / Jez Humble
16. Backstage talks with GOTO speakers / Interview

18. Making Sense of Connected Data with NeodJ / Jim Webber

24. Portfolio IkKanban / Karl Scotland

30. Grace: an open-source, object-oriented programming language for eclucation

/ James Noble. Kim.B.Bruce-. Andrew P.Black- Michael Homer

contributors

Polyglot Pers

:l Martin Fowler,

Author, speaker, consultant with
ThoughtWorks and general loud-
mouth on software development

:, Pramod Sadalage
= Principal Consultant, ThoughtWorks Inc

Different cdatabases are designed to solve different problems. Using a single database engine for all
of your requirements, usually leads to non-performant solutions. Storing transactional data, caching
session information, and traversing a graph of customers and the products their friends bought are
essentially different problems. Even in the RDBMS space the requirements of an OLAP and OLTP
system are very different, but they are often forced into the same schema.

Consider the relationship between data. RDBMS are good at enforcing that relationships exist. If you want to
discover relationships, however, or have to find data from different tables that belong to the same object, then
using RDBMS is difficult.

Database engines are designed to perform certain operations on certain data structures and data amounts very
well, such as operating on sets of data or storing and retrieving keys and their values really fast or storing rich

documents or storing complex graphs of information.

Disparate data storage needs
Many enterprises use the same database engine to store business transactions and session management data

and also for other storage needs such as reporting, Bl, data warehousing, and logging information.

e-commerce platform

£ g

Session
dnta BI;W

Shopping Completed
cart data orders

RDEMS

Use of RDBMS for every aspect of storage for the application

http://gotocon.com/aarhus-2012/speaker/Martin+Fowler?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

sistence

Session, shopping cart or order data, however, do not need the same availability or consistency properties or

the same backup requirements of the data storage. Does session management storage need the same rigorous
backup/recovery strategy as the e-commerce orders data? Does session management storage need more

availability of an instance of the database engine to write/read session data?

In 2006 Neal Ford coined the term Polyglot Programming to express the idea that applications should be written
in a mix of languages to take advantage of the fact that different languages are suitable for tackling different
problems. Complex applications combine different types of problems, so picking the right language for each

aspect of the job may be more productive than trying to fit all aspects into a single language.

Similarly, when working on an e-commerce business problem, it is important to use a datastore that is highly
available and scalable for storing the shopping cart. The same datastore , however, cannot help you find products
bought by a customer’s friends, which is a totally different question that the datastore needs to answer. We use

the term Polyglot Persistence to define this hybrid approach to persistence.

Polyglot datastore usage

Let’s review our e-commerce example using the polyglot persistence approach in our architecture and see how
some of these different datastores can be applied. In this example, a key-value datastore is used to store the
shopping cart data before the order is confirmed by the customer and also used to store the session data, but
now the RDBMS is not used to store this transient data. Key-value stores make sense here because the shopping
cart is usually accessed by userld and once it is confirmed and the order is paid for by the customer, it can be

saved in the RDBMS. Similarly session data is keyed by the sessionld.

e—-commerce
platform

Shopping Session
cart data data

Completed
Orders

Key-Value
Key-Value

store

store

RDBMS

Use of key-value stores to offload session and shopping cart data storage

If you need to recommend products to customers when they put products into their shopping carts, with
messages such as Your friends also bought these products or Your friends bought these accessories for this

product, then introducing a graph datastore into the mix becomes relevant.

6

P e

Martin Fowler & Pramod Sadalage

e-commerce
platform
Shopping cart Inventory Customer
and session and social
data Item Price graph
e —
Completed

Key-Value Orders Graph store

store

Document RDEMS

(Legacy DB)

store

Example implementation of Polyglot Persistence

It is not necessary for the application to use a single datastore for all of its needs, since different databases are

built for different purposes and not all problems can be elegantly solved by one singe database.

Even using specialized relational databases for different purposes within the same application, such as data

warehousing appliances or analytics appliances, can be considered an example of polyglot persistence.

Se ge

As we move towards using multiple datastores in an application, there may be other applications in the enterprise
that could benefit from the use of those datastores or the data stored in the datastores. In our previous example,
the graph datastore can serve data to other applications that need to understand a question like “which products

are being bought by a certain segment of the customer base” or similar questions.

Instead of having each application talk independently to the graph database, wrapping the graph database with
a service allows all relationships between the nodes to be saved in one place and queried by all the applications.
The data ownership and the API’s provided by the service are more useful than a single application talking to

multiple databases.

P

Martin Fowler & Pramod Sadalage

e

e-commerce platform

/fi

Shopping cart
and session
data

Key-Value
store

N

Customer
Inventory social
and graph
Item Price
Completed \\\\‘
Orders f

Document
store

RDBMS
(Legacy DB)

Friends bought
these products

Graph store

service

Example implementation wrapping data stores with services

This philosophy of service wrapping can be taken further. You could, for example, wrap all databases with

services so that the application is basically just talking to a bunch of services. This allows for the databases inside

the services to evolve without having to change the application.

/

e—commerce platform

!//!

Shopping cart
and session
data

%

Session storage
service
Key-Value
store

Inventory
and
Item Price Customer
social graph
Comp leted
Orders
g Inventory and Nodes and

Order persistence

Document

Price service
service
RDEMS

(Legacy DB)

store

Relations service

——
Graph store

Using services instead of talking to databases

Many NoSQL datastore products actually provide out of the box REST APIs such as Riak

and Neo4)

P e

Martin Fowler & Pramod Sadalage

= ty

Because of existing legacy applications and their dependency on existing data storage, many times we cannot
easily move to new data storage systems to add functionality such as caching for better performance or to
use indexing engines such as Solr so that search can be better served. When new technologies like Solr are
introduced you have to make sure that data is synchronized between the data storage for the application and

the indexing engine.

When there is a need to update the indexed data, as the data in the application database changes, the process
to update the data can be real time or batch, as long as you ensure that the application can deal with stale data

in the index/search engine. The event sourcing pattern described earlier can be used to update the index.

e-commerce
platform

4 Search

reguests
Session Y
data
SOLR
cart data Orders Update
Indexed Data
Y

RDEMS

Batch or realtime to
update indexed data

Using supplemental storage to enhance legacy storage

C)y

The various data storage technologies available today give you a rich choice of data storage solutions. The
pendulum initially swung away from specialty databases to a single database like the RDBMS that allow all
types of data models to be stored--although with some abstraction. The trend is now shifting back to using the

data storage technology that supports the implementation of solutions natively.

Consider this, you may have to implement a feature that recommends additional products to customers based

on what is in their shopping carts. Therefore you will need to know which additional products were purchased

Polyglot Persistence

Martin Fowler & Pramod Sadalage

by earlier customers who also bought the products that are in the current customer’s shopping cart. This
feature can be implemented in any of the data stores by persisting the data with the correct attributes to
answer these questions. The trick is to use the right technology so that when the questions change, the
answers can be asked of the datastore without losing existing data or changing all the existing data into

new formats.

Going back to this new feature you may need, you could use a RDBMS to solve this problem using
hierarchal query and model the tables accordingly. When you need to change the traversal, however, you
will have to refactor the database, migrate the data, and then start persisting new data. Instead, if you had
used datastores that track relations between nodes, we could have just programmed new relations and

started using the relationships data store with minimal changes.

Key Points
Polyglot persistence is about using different data storage technologies to handle varying data
storage needs.
Polyglot persistence can occur across an enterprise or within a single application.
Encapsulating data access through services reduces the impact of data storage choices on other

parts of a system.

This excerpt is from Pramod Sadalage and Martin Fowler’s upcoming book “NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence” that will be published in August.

Interested in learning more about NoSQL from Martin Fowler? At GOTO Aarhus 2012 Martin will present
an “Introduction to NoSQL” in the “Apps of NoSQL” track.

The GOTO team organizes
year round GOTO Nights to
support local communities
and networks in the
industry.

On May 31 we had the
privilege of welcoming
Pramod Sacdalage from

ThoughtWorks in Hamburg,
Germany.

Pramod gave a talk about
“NoSQl. Distilled”, we had a
great night with an engaged
audience.

Check out the presentation!

http://youtu.be/l68zxgZS_wc
http://gotocon.com/aarhus-2012/presentation/Introduction%20to%20NoSQL?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=612&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/speaker/Martin+Fowler
http://youtu.be/l68zxgZS_wc
http://www.informit.com/store/product.aspx?isbn=0321826620
http://www.informit.com/store/product.aspx?isbn=0321826620

IFOU)es

of LLow-

Is your style of delivery high-risk, ‘big bang” deployment? Unless you're an adrena-
line junkie, you're just risking spectacular failure with your company’s money and
your sanity. Jez Humble, coauthor of “Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation”, provides detailed exam-
ples of how four simple principles can reduce your risk from high to low and increase
your chances of success from low to high.

:, Jez Humble
§ Principal Consultant, ThoughtWorks

One key gc /ment is to NOTE
In this article, I'm focusing on release practices. Developers and
reduce the e. Counter-) i
testers can do many other things to reduce release risk, such as
intuitively, dincreased continuous integration and automating tests, but | won’t deal
prod uction sum game, with those topics here. I've also limited the scope of the discus-
i sion to hosted services such as websites and “Software as a Ser-
and effecti nt actually . o))
vice” systems, although the principles can certainly be applied
reduces th: release. In more widely.
the course elivery and o
. , Principle 1: ncremental
talkmg to p , I've come Any organization of reasonable maturity will have production
to see that reduced to systems composed of several interlinked components or ser-
fou: les: vices, with dependencies between those components. For ex-

o Low-risk releases are incremental.

¢ Decouple deployment and release.

* Focus on reducing batch size.

* Optimize for resilience.

ample, my application might depend on some static content,
a database, and some services provided by other systems. Up-
grading all of those components in one big-bang release is the
highest-risk way to roll out new functionality.

Instead, deploy components independently, in a side-by-side
configuration wherever possible, as shown in Figure 1. For ex-
ample, if you need to roll out new static content, don’t over-
write the old content. Instead, deploy that content in a new di-

rectory so it’s accessible via a different URI—before you deploy

http://gotocon.com/aarhus-2012/speaker/Jez+Humble?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

ISCS

=

AL APPLICATION
Flasc .0

STATIC CONTENT

Router /
LOfa Balhrdir

Inde rave b

Figure 1 Upgrading incrementally.

Database changes can also be rolled out incrementally. Even or-
ganizations like Flickr, which deploy multiple times a day, don’t
roll out database changes that frequently. Instead, they use the
expand/contract pattern. The rule is that you never change ex-
isting objects all at once. Instead, divide the changes into re-

versible steps:

1. Before the release goes out, add new objects to the database
that will be required by that new release.

2. Release the new version of the app, which writes to the new
objects, but reads from the old objects if necessary so as to mi-
grate data “lazily.” If you need to roll back at this point, you can
do so without having to roll back the database changes.

3. Finally, once the new version of the app is stable and you’re
sure you won’t need to roll back, apply the contract script to fin-

ish migrating any old data and remove any old objects.

Similarly, if the new version of your application requires a new
version of some service, you should have the new version of
that service up, running, and tested before you deploy the new
version of your app that depends on it. One way to do this is
to write the new version of your service so that it can handle

clients that expect the old version. (How easy this is depends

a lot on your platform and design.) If this is impossible, you'll
need to be able to run multiple versions of that service side by
side. Either way, your service needs to be able to support older
clients. For example, when accessing Amazon’s EC2 API over
HTTP, you must specify the APl version number to use. When
Amazon releases a new version of the API, the old versions carry
on working.

Designing services to support clients that expect older versions
comes with costs—most seriously in maintenance and compat-
ibility testing. But it means that the consumers of your service
can upgrade at their convenience, while you can get on with
developing new functionality. And of course if the consumers
need to roll back to an older version of their app that requires
an older version of your service, they can do that.

Of course, you must consider lots of edge cases when using
these techniques, and they require careful planning and some
extra development work, but ultimately they’re just applica-
tions of the branch-by-abstraction pattern.

Finally, how do we release the new version of the application in-
crementally? This is the purpose of the blue-green deployment
pattern. Using this pattern, we deploy the new version of the
application side by side with the old version. To cut over to the
new version—and roll back to the old version—we change the

load balancer or router setting (see Figure 2).

Figure 2 Blue-green deployment.

A variation on blue-green deployment, applicable when running
a cluster of servers, is canary releasing. With this pattern, rather
than upgrading a whole cluster to the latest version all at once,
you do it incrementally. For example, as described in an excel-
lent talk by Facebook’s release manager, Chuck Rossi, Facebook
pushes new builds to production in three phases (see Figure 3):
1. First the build goes to A1—a small set of production boxes to
which only employees are routed.

2. Ifthe Al deployment looks good, the build goes to A2, a “cou-

ple of thousand” boxes to which only a small percentage of us-
ers are routed.

3. Al and A2 are like canaries in a coal mine—if a problem is dis-
covered at these stages, the build goes no further. Only when

no problems occur is the build promoted to A

Figure 3 Facebook’s three phases for pushing new builds to
production.

An interesting extension of this technique is the cluster im-
mune system. Developed by the engineers at IMVU, this system
monitors business metrics as a new version is being rolled out
through a canary releasing system. It automatically rolls back
the deployment if any parameters exceed tolerance limits,
emailing everyone who checked in since the last deployment so
that they can fix the problem.
Princip elease
Blue-green deployments and canary releasing are examples of
applying the second of my four principles: decoupling deploy-
ment and release. Deployment is what happens when you in-
stall some version of your software into a particular environ-
ment (the production environment is often implied). Release
is when you make a system or some part of it (for example, a
feature) available to users.

You can—and should—deploy your software to its production
environment before you make it available to users, so that you
can perform smoke testing and any other tasks such as waiting
for caches to warm up. The job of smoke tests is to make sure
that the deployment was successful, and in particular to test
that the configuration settings (such as database connection
strings) for the production environment are correct.

Dark launching is the practice of deploying the very first ver-

sion of a service into its production environment, well before
release, so that you can soak test it and find any bugs before
you make its functionality available to users. The term was
coined by Facebook to describe its technique for proving out
its chat service: “Facebook pages would make connections to
the chat servers, query for presence information and simulate
message sends without a single Ul element drawn on the page.”
When they were ready to release the chat service, they simply
changed the HTML to point to the JavaScript which held the real
Ul. “Rolling back” would have involved simply changing back to
the previous JavaScript.

However, as our systems evolve, it would be nice to have a way
to decouple the deployment of a new version of our software
from the release of the features within it. In this way, we can
deploy new versions of our software continuously, completely
independently of the decision as to which features are available
to which users. Feature toggles can perform this function. As
Chuck Rossi described, Facebook developed a tool called “Gate-
keeper” that works with Facebook’s feature toggles to control
who can see which features at runtime. For example, they can
roll out a particular feature to only 10% of users, or only wom-
en under 25. This design allows them to test features on small
groups of users and get feedback before a more general rollout.
Similar techniques can be used for A/B testing.

Feature toggles also enable you to degrade your service under
load gracefully—as Facebook did when launching usernames—
and to switch off problematic new features if bugs are discov-
ered in them, rather than rolling back the release by redeploy-

ing the previous version.

Princiy h Size
Another essential component of decreasing the risk of releases
is to reduce batch size. In general, reducing batch size is one of
the most powerful techniques available for improving the flow
of features from brains to users. Donald G. Reinertsen spends a
whole chapter in his excellent book “The Principles of Product
Development Flow: Second Generation Lean Product Develop-
ment” (Celeritas, 2009) discussing a whole constellation of ben-
efits generated by reducing batch size, from reducing cycle time
(without changing capacity or demand) and preventing scope
creep to increasing team motivation and reducing risk.

We particularly care about that last benefit—reducing risk.
When we reduce batch size we can deploy more frequently, be-
cause reducing batch size drives down cycle time. Why does this
reduce risk? When a release engineering team spends a week-
end in a data center deploying the last three months’ work, the

last thing anybody wants to do is deploy again any time soon.

But, as Dave Farley and | explain in our book “Continuous Deliv-
ery: Reliable Software Releases through Build, Test, and Deploy-
ment Automation”, when something hurts, the solution is to do
it more often and bring the pain forward. Figure 4 shows a slide
from John Allspaw’s excellent presentation “Ops Meta-Metrics:
The Currency You Use to Pay for Change,” which should help to
illustrate the following discussion on how reducing batch size

helps decrease deployment risk.

Figure 4 Reducing batch size reduces risk.

Deploying to production more often helps to reduce the risk of
any individual release for three reasons:

¢ When you deploy to production more often, you’re practicing
the deployment process more often. Therefore, you'll find and
fix problems earlier (and hopefully in deployments to prepro-
duction environments), and the deployment process itself will
change less between deployments.

The other reasons have to do with optimizing the process of fix-
ing incidents. It’s often the case that a deployment gone wrong

causes an incident. Incidents occur in three phases:

1. Finding out that an incident has in fact occurred (which is why
monitoring is so important).

2. Finding out enough about the root causes to be able to work
out how to get the system back up again.

3. Getting the system back up, followed by root-cause analysis
and prioritizing work to prevent the incident from happening

again.

Deploying more frequently helps with the second and third

steps of the incident-resolution process.

Time 10 réslone sénvice

[P r

=
Time lo detect Find causes Remediate

Figure 5 Lifecycle of an incident.

e When you’re deploying more frequently, working out what
went wrong is much easier because the amount of change is
much smaller. It’s going to take you a very long time to find
what went wrong if you have several months’ worth of changes
to search—probably you’ll end up rolling back the release if you
have a critical issue. But if you’re deploying multiple times a
week, the changes between releases are small, and they’re like-
ly to be a good place to start when looking for the root causes

of the incident.

e Finally, rolling back a small change is much easier than rolling
back several months’ worth of stuff. On the technical front, the
number of components affected is much smaller; on the busi-
ness front, it’s usually a much easier conversation to persuade
the team to roll back one small feature than twenty big features
the marketing team is relying on as part of a launch.

If your deployment pipeline is really efficient, it can actually be
quicker to check in a patch (whether that’s a change to the code
or a configuration setting) and roll forward to the new version.
This is also safer than rolling back to a previous version, because
you're using the same deployment process you always use,
rather than a rollback process that’s not as well tested.

As my colleague llias Bartolini points out, this capability de-

pends on two conditions:

* Having a small lead time between check-in and release, since
often multiple commits are required to fix a problem. (You
might first want to add some logging to help with root-cause

analysis.)

e Your organization must be set up to support a highly opti-
mized deployment process. Developers must be able to get
changes through to production without having to wait for out-

of-band approvals or tickets to be raised.

Princi ience

As Allspaw points out, there are two fundamental approaches
to designing a system. You can optimize for mean time between
failures (MTBF), or for mean time to restore service (MTRS). For
example, a BMW is optimized for MTBF, whereas a Jeep is op-
timized for MTRS (see Figure 6). You pay more for a BMW up
front, because failure is rare—but when it happens, fixing that
car is going to cost you. Meanwhile, Jeeps notoriously break
down all the time, but it’s possible to disassemble and reassem-

ble one in under four minutes.

Figure 6 Two different approaches to system design.

Like a Jeep, it should be possible to provision a running produc-
tion system from bare metal hardware—or via a virtualization
API—to a baseline (“known good”) state in a predictable time.
You should be able to do this in a fully automated way by using
configuration information stored in version control and known
good packages (in ITIL-world, these come from your definitive
media library).

This ability to restore your system to a baseline state in a pre-
dictable time is vital not just when a deployment goes wrong,
but also as part of your disaster-recovery strategy. When Net-
flix moved its infrastructure to Amazon Web Services, building
resilience into the system was so important that the develop-
ers created a system called “Chaos Monkey,” which randomly
killed parts of the infrastructure. Chaos Monkey was essential
both to verify that the system worked effectively in degraded
mode—a key attribute of resilient systems—and to test Netflix’
automated monitoring and provisioning systems.

The biggest enemy in creating resilient system is what the Vis-
ible Ops Handbook (Kevin Behr, Gene Kim, and George Spafford;
Information Technology Process Institute, 2004) calls “works of
art”: components of your system that have been hand-crafted
over the years and which, if they failed, would be impossible to
reproduce in a predictable time. When dealing with such com-
ponents, you must find a way to create a copy of that compo-
nent by using virtualization technology—both for testing pur-
poses, and so you can create new instances of it in the event
of a disaster.

But the most important element in creating resilient systems
is human, as Richard | Cook’s short and excellent paper “How

III

Complex Systems Fail” points out. This is one of the reasons
that the DevOps movement focuses so much on culture. When
a service goes down, it’s imperative both that everyone knows
what procedures to follow to diagnose the problem and get the
system up and running again, and also that all the roles and

skills necessary to perform these tasks be available and able

to work together well. Training and effective collaboration are
key here—issues discussed at more length in John Allspaw and
Jesse Robbins’ book Web Operations: Keeping the Data on Time
(O’Reilly, 2010).

Cc NS

At many of my early gigs, any change you wanted to put out
had to include a rollback procedure in case the change went
wrong. Often rollback meant redeployment of the previous ver-
sion, along with rolling back database changes—processes that
(rather like restoring from backups) had not been tested nearly
as well as the deployment process, if at all.

One of the concepts introduced by ITIL is remediation, defined
as “recovery to a known state after a failed change or release.”
The patterns and practices described here provide a way to re-
mediate in a low-risk way—perhaps by changing a router set-
ting or switching off a problematic feature—without resorting
to rollback to a previous version of your system.

With these techniques, you can dramatically reduce the risk of
releasing to users. However, they come with an added devel-
opment cost and require some upfront planning, so you pay a
certain amount in advance in order to achieve this lowered risk.
Often these kinds of costs are hard to justify, partly because
people have a tendency to undervalue a reward that some way
exists in the future. (This is a behavioral bias known as tempo-
ral discounting.) This is one of the reasons why reducing batch
size—and thus decreasing lead time—is important: You also get
feedback much sooner on the benefits of changing your deliv-
ery process, which increases motivation.

These practices also depend on having good foundations in
place—effective monitoring, comprehensive configuration
management, a deployment pipeline, and an automated de-
ployment process. If you're lacking in any of these areas, you’ll
need to address them as part of implementing a more reliable
release process.

Operations teams often resist change, on the basis that any
change carries risk. While this is true, it doesn’t follow that we
should attempt to reduce the frequency of changes, since this
in turn leads to high-risk “big bang” deployments. Instead, cre-
ate more stable and reliable services by building resilience into
systems and working to minimize and mitigate the risk of each

individual change.

Thanks to Max Lincoln, Mark Needham, llias Bartolini, Peter
Gillard-Moss, and Joanne Molesky for feedback on an earlier
version of this article. Thanks also to Martin Fowler and John
Allspaw for permission to reproduce their diagrams.

The GOTO Conference Magazine wants to thank InformIT for
granting the permission to use this article

Jez Humble will run the “Continuous Delivery” Training Course”
at GOTO Aarhus 2012. He takes the unique approach of mov-
ing from release back through testing to development practices,
analyzing at each stage how to improve collaboration and in-
crease feedback so as to make the delivery process as fast and
efficient as possible. Furthermore Jez will present in both the
“Agile Perspectives” and the “Continuous Delivery” track at the
conference.

http://www.informit.com/articles/article.aspx?p=1833567&seqNum=1
http://gotocon.com/aarhus-2012/speaker/Jez+Humble?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/Continuous%20Delivery?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=599&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=604&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

Vikings at GOTO Aarhus 19:00 Oct. 1.th

Join the welcome party. See you there...

http://gotocon.com/aarhus-2012/?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

onversations
\(M;ith a few of our GOTO Aarl

In May 2012 at GOTO Copenhagen, we had a chance to do a
series of interviews with some of the speakers. These interviews
are conversations with speakers around their particular area of
expertise where they provide their own insights, interest and
lessons learned. You can also look forward to meeting these

speakers in person at GOTO Aarhus in October 2012.

Kasper Lund is one of the lead developers behind V8 at Google. After implementing
JS with V8, the team decided to create a language which would be easier to optimize,
and to work with for developers, now known as Dart. Essentially, Dart is about
enabling more people to do web programming. Hear directly from one of the lead-
Dart developers, Kasper, on why the world needs Dart.

Kasper Lund is the host of the “JavaScript” track in which he will also present about
“Translating Dart to efficient JavaScript”

.a http:/[www.youtube.com/watch?v=HOSXv45QEBM

Brian Leroux who leads open source PhoneGap project team at Adobe shares with
us the history behind PhoneGap along with his thoughts on what the future holds in

this candid video interview.
Brian Leroux will present in both the “Mobile cross-platform, testing and tools” and
the “Modern Client App Architecture” track at GOTO Aarhus 2012

ba http:/[www.youtube.com/watch?v=4tjXcDITH_I

http://www.youtube.com/watch?v=4tjXcD9TH_I
http://www.youtube.com/watch?v=HOSXv45QEBM
http://gotocon.com/aarhus-2012/speaker/Kasper+Lund?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=600&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/Translating%20Dart%20to%20efficient%20JavaScript?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/speaker/Brian+LeRoux?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=605&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://www.youtube.com/watch?v=HOSXv45QEBM
http://www.youtube.com/watch?v=4tjXcD9TH_I
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=611&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

s 2012 Speakers

Simon Brown, Founder of Coding the Architecture and either a software architect who codes or
a software developer who understands architecture, talks about what it takes to be an architect,
a bit about why he became interested in software architecture himself and what is needed in
terms of modeling to support architecture design.

Learn in practice what Simon Brown talks about in this interview. Sign up for his “Effective
architecture sketches” training session, where you’ll be asked to design a software system and

practice communicating your vision through a series of effective architecture sketches.

.a http:/[www.youtube.com/watch?v=6t0EOHy60BA

Michael Nygard, the man behind the book: “Release IT” shares his story of how he
cheated his way into Ops, where he learned enough to write his book, and why it can
be hard to introduce continuous delivery in your organization. This is also the first time
Michael talks about NoOps on record, hear what he has to say on this in the video.
Michael Nygard hosts the “Continuous Delivery” track at in which he also a speaker.
Furthermore does Michael will run a training session on “Production ready software”.

’a http:/[youtu.be/qkblZoRzEZo

Steve Freeman and Nat Pryce, the authors behind “Growing Object-Oriented Soft-
ware, guided by tests” talk in this video about how fear of adding more code makes
developers create huge ugly classes. Also, they invite developers to be lazy so they
stop spending time doing stupid things and instead write the tests that are needed

to save work.

Steve Freeman and Nat Pryce will present in the “Makers” track and teach the hand-
on training session “TDD at the system scale”, about techniques for test-driven de-
velopment at large scales, starting development with end-to-end tests at the system

or system-of-systems level.

> a http:/[www.youtube.com/watch?o=KTraKQ9IKOnY

http://www.youtube.com/watch?v=KTraKQ9KOnY
http://www.youtube.com/watch?v=6t0EOHy6OBA
http://youtu.be/qkblZoRzEZo
http://gotocon.com/aarhus-2012/speaker/Simon+Brown?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/Effective%20architecture%20sketches?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/Effective%20architecture%20sketches?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/speaker/Michael+T.+Nygard?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=604&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/speaker/Steve+Freeman?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/tracks/show_track.jsp?trackOID=603&utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/TDD%20at%20the%20system%20scale?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/speaker/Nat+Pryce?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/Production%20ready%20software?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://www.youtube.com/watch?v=6t0EOHy6OBA
http://www.youtube.com/watch?v=KTraKQ9KOnY
http://youtu.be/qkblZoRzEZo

</

Portfolio

Ianban

Steering the Agile Enterprise with IKanban Thinking

=, Karl Scotland: Software Systems
=& Thinker, Practitioner and Agile Coach at
Rally Software Development

Large scale, enterprise organisations consist of many initiatives, programs,
projects and development teams. While it is well understood how each
individual team can achieve the benefits of agility, it is more difficult for the
enterprise as a whole to achieve those same benefits. This article will look at
how Kanban Thinking can inform the design of a Portfolio Kanban System,
with a view to steering the Agile Enterprise to attain those benefits in order

to respond to today’s competitive environments and unpredictable change.

KANBAN THINKING

Kanban Thinking is the framework | use when approaching the design of a Kanban System within a given context. The central concept

is that the design approach is based on principles of Systems Thinking.

On the right side are the leverage activities for evolving the system design; study, share, limit, sense and learn. Studying the current
system helps understanding of the existing context. Sharing that understanding gives everyone knowledge about what is happening.
Putting limits in place bounds the system to help stabilise it. Sensing how the system is performing gives an understanding of current
capability. Finally, learning from the systems performance allows its capability to be continually improved.

On the right side are the anticipated impacts the system design should have; flow, value
and capability. Achieving flow involves a smooth, regular and frequent progress of work.
Kanban Thinking looks to eliminate delays rather than eliminate waste. Delivering value
involves focussing on doing the right thing in order to delight the customer (and other
stakeholders). Kanban Thinking looks to maximise value rather than minimise cost. Building
capability involves developing people and knowledge as a foundation for business success.
Kanban Thinking looks to develop people as problem solvers rather than their tools to solve

problems.

-
¥

DIy E oo

Lk ol [j>

(.&Qaba'.'|;\ﬂ}

T

\ |
e — W L?\'-.U'E} .

THE PORTFOLIO AS A SYSTEM

As a system, a portfolio is more than the sum of its parts - that is the initiatives, projects,
features, teams and people - but is a product of the interactions of those parts with a
particular tendency. Managing a portfolio, and as a result steering the enterprise, is the job

of designing and guiding the portfolio such that its tendency is to have a positive impact.

First | will describe how the levers can be used to discover a Portfolio Kanban System design,

and then show how to understand the impact of that design.

Portfolio Levers

Studying

When studying an existing portfolio, it is useful to begin by identifying all the work that is
currently known about, from early ideation, to already in production and being maintained.

That work can then be clustered and arranged into themes based on similarity or relatedness.

19

BupUIY L Uequed|

UuMm

Jcligjus

u B é:—iuli\i 'até BurLieals
ol} (};'u Od

oSl

An important question
to ask when designing
the mechanism to share
the portfolio is what
you want to understand
in order to learn.

The TIP (Token,
Inscription, Placement)
heuristic is one I find
useful to think about
how to amplify the
important signals, and

dampen any noise.

Common patterns which emerge are often based around investment and work item

types, hierarchies and their governance workflow.

Ix il G‘H'::\.J-E_S

|rvestrents

2

(G
~eotuce_ S
‘ _._____

Examples of investment types might be areas such as architecture, urgent customer
requests, current market segments, expanding market segments or future opportunities.
Those investment types could be made up of initiatives, which are progressed through

the development of features, which are iterated on by breaking down into stories.

Sharing
Sharing a portfolio involves creating a model of the work which everyone can easily access

and understand. Visual kanban boards provide a powerful mechanism for achieving this.

The most common approach is to create columns for the various stages of workflow that
work items go through. For example, initiatives might begin as options, then have some
discovery work done, then be assessed for suitability, then built and released before the

results are reviewed for learning.

|Ogen|

Discovu| Assess Eoziﬁ Le_ﬁm

An important question to ask when designing the mechanism to share the portfolio is
what you want to understand in order to learn. The TIP (Token, Inscription, Placement)
heuristic is one | find useful to think about how to amplify the important signals, and

dampen any noise.

Limiting

Limiting a portfolio is the means by which it can be effectively steered. By limiting the
number of initiatives or features being worked on, they can be completed sooner, and
with greater predictability, allowing organisations to get earlier feedback and respond

better to new information and changing market conditions.

Work can be limited at a number of levels. Investment allocation can help keep the
portfolio focussed on the right mix of work. The number of initiatives and features can

be limited to focus on finishing work before new work is started. Flowing work through

stable teams can be used to balance demand against the capacity and capability of those
teams.

As well as just limiting work in process through a Portfolio Kanban System, another form of
limit is explicit policies. Creating transparency of the boundaries of the system design mean
that the system can be stable within those constraints and the policies can be evolved to
allow the system to evolve. A simple approach to policies is to add a checklist of exit criteria

to each stage of the workflow.

\(ngm\’D:sr_-aw Assess | Roild | Lepn |
;::;Lt 1 -] _." . - L_ _' _ -; _ ..‘
Toliey| | :
sk | 5 | D 2
Sensing

Sensing the performance of the portfolio is what tells us how well it is being steered, so
that direction can be adjusted effectively. There are generally two elements to sensing;

establishing a cadence and measuring outcomes.

Establishing a cadence creates a sense of rhythm, and helps lessen the co-ordination cost
of getting people together. Setting up a regular meeting to plan and review the portfolio
enables a forum for gathering new information and feedback. A Portfolio Council is then
able to respond by scheduling and re-prioritizing work in a timely manner and ensure focus

is on the most important work.

Establishing appropriate measures generates insights which can aid decision making about
what can be done to enable better outcomes. For a Portfolio Kanban System, financial
measure seems to be appropriate. An economic model, which uses high level estimates
of the costs and benefits of initiative or features, along with an understanding of the run-
rate of teams, allows effective trade-off to be made between portfolio items. A timeline
of planned and actual progress, for example, provides the basis for a rolling forecast as an

alternative to annual plans.

Uum

| 9118y a1 burieas

HeASidhiod

BupjuIy . ueque)|
Jclioyuz

oSl

I| | /PIWQJ f
== =g

Tl
=
/ﬂuCPUE\\ L_._:__ _—:] SO
e -
|
| - |
- |
i, il
-3 | (-
5 Fm'*urgy |

Learning
Whatever choices you make, the design of your Portfolio Kanban System, and the work within it, it
will be wrong! Learning, the detection and correction of those errors, is key to evolving the portfolio

to have a greater impact.

Steering a portfolio is about updating the portfolio to match the reality of the current situation,
rather than managing the portfolio towards a future situation. By sensing current performance
with a regular cadence, work can be advanced, delayed or even killed to keep focus on the most

important work.

Evolving a Portfolio Kanban System is about running deliberate experiments, with prediction and
validation of how changes to the system design will affect its impact. Again, by sensing current
performance with a regular cadence, visualisations, WIP limits and other explicit policies can be

adjusted as knowledge is gained about what a better design should be.

Portfolio Impact

Flow

Achieving flow across a Portfolio Kanban System means that the initiatives, programs, projects or
features in the system progress with as few delays as possible. As a result the enterprise will be
more responsive to the competitive landscape, so that when new information surfaces it can be
reacted to effectively. Further, when flow is smooth across a portfolio, the work delivered by the

system becomes more reliable as variability of lead times is reduced to within understood ranges.

Value

Delivering value from a Portfolio Kanban System means the initiatives, programs, projects or
features in the system are the most important things that could be worked on at that time. As
a result stakeholder satisfaction will increase as customers get their needs met. Maintaining

stakeholder satisfaction sustainably means that quality will also increase.

Capability

Building capability with a Portfolio Kanban System means that the right initiatives, programs,
projects or features can be effectively delivered over the long term, and not just the short term.
As a result employee satisfaction will increase, leading to greater retention of people and their
knowledge. This long term building of people, teams and their skills will also lead to an increase in

overall productivity.

mongoDB UK

MongoDB UK is an annual one-day
conference dedicated to the open-source,
non-relational database MongoDB.

For more details, visit mongoUK.com.

ONE SIZE DOES NOT FIT ALL

@ ACID transactions

Realtime analytics voltdb.com
“Five nines™ availability @voltdb ﬂ

Multi-level durability h
lame your data

Cloud ready tsunamis with VoltDB

Volt

The NewSQL database for high velocity applications

T mbored...

]
A

-modvle(jolS.
~export ([start/1]).
~mport @orld, [developers/o]).
start®Fon) ->
try
[apply (Dev, [raw(1D

T kiow what you
Shovld Ao

) Dev < developers(), Fuon (Dey,

Klarna.com/career \:I }

Ohreally...

2 => pocatch

Wklarna

klarna.com/career

sriak

[ree-ahk] -noun

1. The most powerful
open-source, distributed
database you'll ever put
into production.

2. The feeling you get
when disaster strikes and
you realize you haven't
lost any data.

(See also: ‘paradise,” ‘utopia’)

http://mongouk.com
http://klarna.com/career
http://voltdb.com
http://basho.com

Making Sense of

Connected Data
with Neo04)j

:, Jim Webber
- Chief Scientist at Neo Technology
and Co-Author of “Rest in Practice”

Making Sense of Connected Data with Neo4j
In order to provide better availability, scale and simplicity, the
NOSQL movement has pushed data storage towards simpler
models with more sophisticated computation infrastructure
compared to traditional RDBMS. In fact, aggregate-oriented
NOSQL stores® utilizing external map/reduce processing are

commonplace today.

In contrast, graph databases like Neo4;j actually provide a far
richer data model than a traditional RDBMS and a search-
centric rather than compute-intensive method for processing
data. Instead of reifying links between data by processing that
data in batches, Neo4j uses graphs as an expressive means
of understanding, storing, and rapidly querying rich domain

models.

Although the graph data model is the most expressive
supported by the NOSQL stores, graphs can be difficult to
understand amid the general clamor of the simpler-is-better
NOSQL mantra. But what makes this doubly strange is that
“simple” NOSQL databases have avowed their capabilities for

graph processing too.

This strange duality where non-graphs stores can be used for
(limited) graph applications was the subject many insightful

mailing list posts from the graphistas in the Neo4j community?.

http://gotocon.com/aarhus-2012/speaker/Jim+Webber?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

Community members have variously discussed the value of using non-graph stores for managing graph data,

particularly since prominent online services have made popular graph processing (like Twitter’s FlockDB).

As it happens the use-case for those graphs tends to be relatively shallow - “friend” and “follow” kinds of
relationships. In those situations, it might be a passable solution to hold information in your values, document

properties, columns, or even rows in a relational database to indicate a shallow relation as we can see in Figure 1:

Document Database

Figure 1 Using convention to imply links in flat data

At runtime, the application using the data store (remember: that’s code we have to write and maintain) will
try to process the implied foreign keys between stored documents to create a logical graph representation
effectively reifying the business information out of the flat data source as we see in Figure 2. This means our
application code needs to understand how to create a graph representation from those unlinked documents by

enforcing some convention (and doing so consistently at scale).

Application Layer

Document Database

Figure 2 Reifying connected data out of flat data is hard work!

[

IN
-

77O9N Ul

ele(] po1OYaULIO

30 asuag Bupje

If the graphs are shallow, this approach might work. Twitter’s FlockDB is an existential proof of such. But as
relationships between data become deeper, more intricate and valuable, this is an approach that runs out of

steam.

Using the documents and foreign keys convention requires implicit graphs to be structured early on in the system
lifecycle (at design time), which in turn means a particular topology from limited understanding of the data
model of the system at that time is baked into the data store and into the application layer. This implies tight
coupling between the code that reifies the graphs and the mechanism through which they’re flattened into and
retrieved from the aggregate store. Any structural changes to the graph now require changes both to the stored
data and the logic that reifies the data.

Neo4j takes a different approach: it stores graphs natively and so separates application and storage concerns.
Simply put, where your application declares interrelated documents, that’s they way they’re stored, searched,

and processed in Neo4j even if those relationships are very deep.

In our social example, the logical graph that we reified from the document store can be natively and efficiently

persisted in Neo4j while remaining true to the domain that it supports as shown in Figure 3.

Graph Database
Figure 3 Storing connected data natively in Neo4j

It's often deceptively easy in some use cases to project a graph from an aggregate store in the beginning. In fact it

might seem that using an aggregate store — with its comfortable key/value semantics — is more productive.

For example, we might develop an e-commerce application with customers and items they have purchased. In
an aggregate-oriented database we could store the identifiers of products our customers had bought inside the
customer entity (or create separate purchase entities linked again by convention only). However making sense of

that storage plan again requires application-level code that we have to build and maintain.

In Neo4j however we simply add relationships named PURCHASED between customer nodes and the product
nodes they’d bought. Since Neo4j is schema-less, adding these relationships doesn’t require migrations, nor
would it affect any existing code using the data. Figure 4 shows this contrast: the graph structure is explicit in the

graph database, but implicit in a document store.

Graph Database

Document Database

Figure 4 Comparing natively connected data with flat disconnected data

Even at this stage, the graph shows its flexibility. Imagine that a number of customers bought a product that

had to be recalled. In the document case we’d run a query (typically using a map/reduce framework) that grabs
the document for each customer and checks whether a customer has the identifier for the defective product in
their purchase history. This is a big undertaking if each customer has to be checked (though thankfully because
it’s an embarrassingly parallel operation we can throw hardware at the problem). We could also design a clever

indexing scheme, provided we can tolerate the write latency and space costs that indexing implies.

With Neo4j, all we need to do is locate the product (by graph traversal or index lookup) and look for incoming

PURCHASED relations to determine immediately which customers need to be informed about the product recall.

Easy!

Of course system requirements are rarely static and it’s a simple step from a basic e-commerce application to
evolve a social aspect to shopping so that customers can receive buying recommendations based on what their
social group has purchased (and by extension people like them, people who live in their area, and people whose

purchase history is similar) as we see in Figure 5.

Graph Database
Figure 5 Social recommendations and selling are simple with graphs

In the aggregate store, we now have to encode the notion of friends and even friends of friends into the store and
into the business logic that reifies the graph. This is where things start to get tricky since now we have a deeper
traversal from a customer to customers (friends) to customers (friends of friends) and then into purchases. What
initially seemed simple is now starting to look dauntingly like a fully-fledged graph store, albeit one we have to

build and maintain.

Conversely with Neo4j we simply use the FRIEND relationships between customers, and for recommendations
we simply traverse the graph across all outgoing FRIEND relationships (limited to depth 1 for immediate friends,
or depth 2 for friends-of-friends), and for outgoing PURCHASED relationships to see what they’ve bought. What's
important here is that it's Neo4j that handles the hard work of traversing the graph, not the application code, and

Neo4j is capable of traversing millions of relationships per second on commodity hardware.

But there’s much more value the e-commerce site can drive from this data. Not only can social recommendations
be implemented by the activities of close friends, but the e-commerce site can also start to look for trends and
base recommendations on them. This is precisely the kind of thing that supermarket loyalty schemes do with big
iron and long-running SQL queries — yet Neo4j can achieve better results on commodity hardware (even down to

the point of sale terminal itself).

For example, one set of customers that we might want to incentivize are those people who we think are young
performers. These are customers that perhaps have told us something about their age, and we’ve noticed a
particular buying pattern surrounding them - they buy DJ-quality headphones. Often those same customers buy
DJ-quality decks too, but there’s a potentially profitable set of those customers that - shockingly - don’t yet own

decks (much to the gratitude of their roommates and neighbors | suspect).

With an aggregate-oriented database, looking for this pattern by trawling through all customer documents and
projecting a graph is laborious, even with map/reduce frameworks to automate the plumbing code and parallelize
the work. But matching these patterns in a graph is quite straightforward and efficient — simply by specifying a
prototype to match against and then by efficiently traversing the graph structure looking for matches?® as we see

in Figure 6.

T
ol
w il
e
b
=1
&1
=1 |
 l

! S Graph Database E

Figure 6 Sophisticated analytics patterns are made simple with graphs

This shows a wonderful emergent property of graphs - simply store all the data you like as nodes and
relationships in Neo4j and later you'll be able to extract useful business information that perhaps you can’t
imagine today, without the performance penalties associated with joins on large datasets or latency associated

with batch processing on external map/reduce frameworks.

In these kinds of situations, choosing a non-graph store for storing graphs is a gamble. You may find that you’ve
designed your graph topology far too early in the system lifecycle and lose the ability to evolve the structure
and perform business intelligence on your data. While in some edge cases non-functional concerns to drive you
towards such a solution (e.g. taking advantage of the write throughput of Apache Cassandra or operational scale

of Riak), in general you're better off with a graph database.

That’s why Neo4j is cool - it keeps graph and application concerns separate, and allows you to defer data
modeling decisions to more responsible points throughout the lifetime of your application. So if you’re looking to

drive value form your graph data then try Neo4;.

At GOTO Aarhus 2012 Jim Webber will run a training course, “A Programmatic Introduction to Neo4j “. It’s a
full day training course that covers the core functionality from the Neo4j graph database, providing a mixture
of theory and accompanying practical sessions to demonstrate the capabilities of graph data and the Neo4j
database.

http://gotocon.com/aarhus-2012/speaker/Jim+Webber?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gotocon.com/aarhus-2012/presentation/A%20Programmatic%20Introduction%20to%20Neo4j?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1

:, James Noble, Victoria University of Wellington
-« kix@ecs.vuw.ac.nz

Although object-oriented programming is widely taught in
introductory computer science courses, no existing object-
oriented programming language is the obvious choice for

a teaching language. While Java was the de facto standard
throughout the 2000’s, in the last few years a range of newer
languages such as Python, Ruby, Scala, C#, F#, Processing, and
JavaScript have begun to make their way into classrooms —
and so to research labs, offices, and, eventually, large software

systems.

During ECOOP 2010, a group of language researchers and
educators concluded that the time was ripe for an effort to
design a language focussed on teaching. A “design manifesto”
was presented at SPLASH 2010, in which we attempted to

lay out design principles for a suitable a language. Since then
three of us (Black, Bruce and Noble) have been meeting weekly

to pursue the design of the language, which we have named

-l Kim. B. Bruce , Pomona College, CA
kim@cs.pomona.edu

:, Andrew P. Black , Portland State University
black@cs.pdx.edu

l Michael Homer, Victoria University of Wellington
"¢ mwh@ecs.vuw.ac.nz

“Grace”, in honor of Admiral Grace Hopper, and in the hope

that the name would serve as an admonition not to settle for

less-than-graceful solutions.

GRACE IN A NUTSHELL

Grace is an imperative object-oriented language with block
structure, single dispatch, and many familiar features. Our
design choices have been guided by the desire to make

Grace look as familiar as possible to programmers who know
contemporary object-oriented languages such as Java, CH,
Ruby, Scala, and Python. We have also been motivated by the
need to give instructors and text-book authors the freedom
to choose their own teaching sequence. Thus, in Grace it

is possible to start teaching using types, to introduce types
later, or not to use types at all. It is also possible to begin

with objects, or with classes, or with functions. Importantly,

r‘\en'ted

for

instructors can move from one approach to another while

staying within the same language.

The traditional first program in a new language is “Hello,

World”. In Grace, we kept this program as simple as we

possibly could:

print “Hello, World”

We think that “Hello, World” needs to be especially simple,
for a number of reasons. Not only is “Hello World” the first
program many experienced programmers write in a new
language, it is also the first programmer beginners will write
in any language. We want those first programs to be easy
because programming is hard enough as it is: especially for
novices, we don’t want the programming language to get in
the way of teaching the fundamental ideas. The less syntax
that is required, the less syntax there is for novices to get
wrong. Our experiences teaching Java, where it is necessary to
have the whole class chant incantations like “pubic static
void main(String arg[])” before the students could
even print “Hello” — and then having to explain the resulting
error messages — have convinced us that avoiding such

accidental complexity is important.

OBJECTS AND CLASSES
Grace can be regarded as either a class-based or an object-

based language, with single inheritance. A Grace class is an

object with a single factory method that returns a new object:

class aCat.named(n : String) {
def name = n

method meow { print “Meow” }

Here the class is called acat and the factory method is called
named. We can create an instance of that class — a new cat

object — and store it in a variable:

var theFirstCat := aCat.named “Timothy”

After executing this code sequence, theFirstcat is bound to
an object with two attributes: a constant field (name), and

a method meow. The method request theFirstCat.name
answers the string object “Timothy” and theFirstcCat.

meow has the effect of printing Meow.

An object can also be constructed using an object literal — a
particular form of Grace expression that creates a new object

when it is executed. For example:

var theSecondCat := object {
def name = “Timothy”

method meow { print “Meow” }

This code binds the variable theSecondcat to a newly
created object, which happens to be operationally equivalent

to theFirstCat.

FIELDS AND VARIABLES

Mutable and immutable bindings are distinguished by
keyword: var defines a name with a variable binding, which

can be changed using the := operator, whereas def defines a

constant binding, initialized using =, as shown here.

var currentWord := “hello”

def world = “world”

currentWord := “new”

The keywords var and def are used to declare both local
bindings and fields inside objects. Like Java — but unlike
JavaScript — fields and methods cannot be added to an object
after it is created. A field that is declared with def is constant.

Each constant field declaration creates an accessor method

3

L eeeee
NN

on the object. Declaring a field with var creates two accessor

methods, one for fetching the currently bound object and one

for changing it. So, after the declaration

def car = object {
def numberOfSeats = 4

var speed: Number := 0.

}

the object car will have three methods called
numberOfSeats, speed, and speed:=(). When we use

() in the name of a method, it indicates the need to supply

arguments. So, the last method might be used by writing car.
speed := 30.

REQUESTING METHODS

Grace method names may consist of multiple parts (“mix-fix
notation”) as in Smalltalk or Objective-C. Separate lists of
arguments are interleaved between the parts of the name,

allowing them to be clearly labeled with their purpose. Thus
we might define on Number objects

method between (1l:Number) and (u:Number)

{

return (1 < self) && (self < u)

}

The syntax of a method request is similar to that used in
Java, C++, and many other object-oriented languages: obj.

meth(argl, arg2), butextended to allow the name of the
method to have multiple parts. We could request the above

method between ()and() on 7 by writing

7 .between(5)and(9)

Single arguments that are literals do not require parentheses,

so alternatively we could write

7 .between 5 and 9

Following many other languages, the receiver self can be

omitted. We have already seen several messages requested of
an omitted receiver; for example, print “Meow” is short for

self.print “Meow”.

BLOCKS AND CONTROL STRUCTURES
Like Ruby, C#, and Scala, Grace includes first-class blocks
(lambda expressions). A block is written between braces and

contains some piece of code for deferred execution. A block

may have arguments, which are separated from the code by
—>, so the successor functionis {x —> 1+x}. A block can
refer to names bound in its surrounding lexical scope, and

returns the value of the last-evaluated expression in its body.

Control structures are designed to look familiar to users of
other languages. However, as in Smalltalk and Self, control
structures in Grace are just methods that take blocks as
arguments.
if (x > 5) then {
print “Greater than five”

} else {
print “Too small”

}

for (node.children) do {
child —> process(child)

Notice that the use of braces and parentheses is not arbitrary:
parenthesized expressions will always be evaluated exactly
once, whereas expressions in braces are blocks, and may thus
be evaluated zero, one, or many times. A return statement
inside a block terminates the method that lexically encloses
the block, so it is possible to program quick exits from a
method by returning from the then block of an if ()then()

or the do block of awhile()do().

TYPES

Types and classes are strictly separated in Grace. A Grace class
is not a type, nor does a Grace class or object implicitly define
a type. When programmers need types they must define

them explicitly. We hope this separation will help us teach

the concepts of types independently from classes. To this end,
Grace supports both statically and dynamically typed code:
omitted types of local variables and constants are inferred (as
e.g. in Scala or C#), but omitted argument types are treated as

the predefined type Dynamic. Messages requested on type

Dynamic will be checked dynamically.

Grace types are structural: they describe properties of objects.
A type is a set of method requests; a type declaration gives a

name to a type.

type Vehicle = {
numberOfSeats —> Number
speed —> Number

speed:=(n : Number) —> Nothing

An object has a type if it has the appropriate methods, and if

the signatures of those methods conform to the signatures
in the type. No inheritance relationships or implements
declarations are necessary. The car object defined above has

the vehicle type, but also has the smaller type { speed —>
Number}.

Within dynamically typed code, types need not be mentioned
at all, and so the introduction of the concept of type can be
delayed until late in the teaching sequence. When instructors
do introduce types, they may do so in the language they are
already using, as opposed to, for example, starting teaching
in Python and then transitioning to Java. A static type checker
will support instructors who wish to require that all student
programs be fully typed.

HOW CAN YOU CONTRIBUTE?

The Grace Project maintains a website at
http://gracelang.org, including the project diary (as a blog),
the evolving language specification, an early prototype

Award-Winning Vendor
of Developer Productivity Tools

Tools Matter™

jetbrains.com

implementation, and other documents and papers about
Grace. We are actively interested in comments and feedback
about the language design, and as the project goes on,

about APIs, libraries, and implementations. We would really
appreciate programmers trying out prototypes as they are
released, and ultimately testing the specification by building

alternative implementations.

References

AP Black, KB Bruce, M Homer, J Noble. Grace: the absence of (inessential)
difficulty. Accessible from gracelang.org/documents, April 2012.

AP Black, KB Bruce, J Noble. The Grace Programming Language Draft
Specification Version 0.353. Accessible from gracelang.org/documents. April
2012.

AARRUS

INTERNATIONAL
SOFTWARE DEVELOPHENT

CONFERENCE 2012

;onference:0ct 1-3
Training: Sept. 30, Oct 4 -5

goto;

ﬂﬂﬂf&l‘ﬂl‘lﬂ&

 http://www.jetbrains.com/
http://gotocon.com/aarhus-2012/?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gracelang.org/
http://gracelang.org/documents/index.html
http://gracelang.org/documents/index.html

- made for developers by developers...proudly presenting the best speakers & brightest attendees

Amsterdam

goto;

goto;

Chicago

STAY IN TOUCH...

Follow us on
twitter

ewsletter

r N
E“Q“‘lﬂafo st “12

Next issue in Augt

http://www.gotocon.com
http://www.gotocon.com

