
Erlang 	

The Driver behind WhatsApp’s Success	

Torben Hoffmann	

CTO, Erlang Solutions	

torben.hoffmann@erlang-solutions.com	

@LeHoff

mailto:torben.hoffmann@erlang-solutions.com

Background

Background

 Erlanger since 2006

Background

 Erlanger since 2006

 Happyness

Background

 Erlanger since 2006

 Happyness

 Mission critical gateway for Tetra

Background

 Erlanger since 2006

 Happyness

 Mission critical gateway for Tetra

 Hard work

Background

 Erlanger since 2006

 Happyness

 Mission critical gateway for Tetra

 Hard work

 Major learnings

Background

 Erlanger since 2006

 Happyness

 Mission critical gateway for Tetra

 Hard work

 Major learnings

Why this talk?

Why this talk?

 Explain the tech foundation for WhatsApp’s
succes

Why this talk?

 Explain the tech foundation for WhatsApp’s
succes

 Understand the design decisions that makes
Erlang unique

Why this talk?

 Explain the tech foundation for WhatsApp’s
succes

 Understand the design decisions that makes
Erlang unique

 Show how Erlang’s features delivers
business value

Why this talk?

 Explain the tech foundation for WhatsApp’s
succes

 Understand the design decisions that makes
Erlang unique

 Show how Erlang’s features delivers
business value

 Spread the Erlang love

Religious Connection

source:http://www.taoistsecret.com/taoistgod.html

Er Lang Shen - Chinese God w/!
a 3rd truth seeing eye

source: http://www.tripadvisor.com/Attraction_Review-g1152320-d1799218-Reviews-Erlang_Temple-Zunhua_Hebei.html

Erlang Temple in Zunhua

http://www.taoistsecret.com/taoistgod.html
http://www.tripadvisor.com/Attraction_Review-g1152320-d1799218-Reviews-Erlang_Temple-Zunhua_Hebei.html

Dealing with disbelievers…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

Dealing with disbelievers…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

Dealing with disbelievers…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://www.rottentomatoes.com/m/1014027-mission/

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

 Founded in 1999 soon after Erlang was released as open source

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Over 300 clients.

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Over 300 clients.

 Headquartered in London, U.K.

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Over 300 clients.

 Headquartered in London, U.K.

 Offices: Stockholm, Krakow, Copenhagen, Aarhus, Budapest,
Seattle and Zurich

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Over 300 clients.

 Headquartered in London, U.K.

 Offices: Stockholm, Krakow, Copenhagen, Aarhus, Budapest,
Seattle and Zurich

 Organically growing and continually investing in R & D

 Founded in 1999 soon after Erlang was released as open source

 Experts at building bespoke scalable, high availability, high
performance systems

 Only company of its kind totally focused on Erlang and Erlang
community

 Over 300 clients.

 Headquartered in London, U.K.

 Offices: Stockholm, Krakow, Copenhagen, Aarhus, Budapest,
Seattle and Zurich

 Organically growing and continually investing in R & D

Core focus

Core focus

 Speed to market

Core focus

 Speed to market

 Low lifetime cost

Core focus

 Speed to market

 Low lifetime cost

 Extreme reliability

Core focus

 Speed to market

 Low lifetime cost

 Extreme reliability

 True scalability

Core focus

 Speed to market

 Low lifetime cost

 Extreme reliability

 True scalability

University Relations

CustomersSome

CustomersSome

19,000,000,000 reasons to use Erlang

WhatsApp

 Real-time Messaging	

 Text and Pictures	

 Group chat

WhatsApp Numbers

WhatsApp Numbers

 10 Erlang engineers

WhatsApp Numbers

 10 Erlang engineers

 ~500M monthly users

WhatsApp Numbers

 10 Erlang engineers

 ~500M monthly users

 19B msg/day in / 40B msg/day out

WhatsApp Numbers

 10 Erlang engineers

 ~500M monthly users

 19B msg/day in / 40B msg/day out

 147M concurrent connections

WhatsApp Numbers

 10 Erlang engineers

 ~500M monthly users

 19B msg/day in / 40B msg/day out

 147M concurrent connections

 peak: 324K msg/s in / 712K msg/s out

WhatsApp Numbers

 10 Erlang engineers

 ~500M monthly users

 19B msg/day in / 40B msg/day out

 147M concurrent connections

 peak: 324K msg/s in / 712K msg/s out

WhatsApp Hardware

 ~550 servers	

 2x2690v2 Ivy Bridge 10-core (40 threads
total) 	

 64-512 GB RAM	

 SSD	

 >11,000 cores

WhatsApp Software

 FreeBSD 9.2	

 Erlang R16B01 (with patches)

Other Users of Erlang

Bet365

Bet365

 Resarch team Re-did a Java system in Erlang
as a POC

Bet365

 Resarch team Re-did a Java system in Erlang
as a POC

 Results:	

 5x connected users in load test	

 4x rate of data change	

 Better utilisation of CPU resources

Bet365

 Resarch team Re-did a Java system in Erlang
as a POC

 Results:	

 5x connected users in load test	

 4x rate of data change	

 Better utilisation of CPU resources

 How to convince the developers to switch?

Bet365 showed that Erlang…

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

 Results:

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

 Results:

 production teams quickly started to
appreciate the benefits of Erlang

https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

 Results:

 production teams quickly started to
appreciate the benefits of Erlang

 did not want to go back to Java
https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

 Results:

 production teams quickly started to
appreciate the benefits of Erlang

 did not want to go back to Java
https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting

Riak from Basho

 Distributed NoSQL database	

 Dynamo inspired key/value store	

 Erlang & C/C++	

 Powers Rovio, Danish Health Services and
many more

Erlang History

There are two ways of constructing
a software design:

One way is to make it so simple that
there are obviously no deficiencies

There are two ways of constructing
a software design:

One way is to make it so simple that
there are obviously no deficiencies
and the other way is to make it so
complicated that there are no obvious
deficiencies.

There are two ways of constructing
a software design:

One way is to make it so simple that
there are obviously no deficiencies
and the other way is to make it so
complicated that there are no obvious
deficiencies.

 - C.A.R. Hoare

There are two ways of constructing
a software design:

Erlang’s Original
Requirements

Erlang’s Original
Requirements

 Large scale concurrency

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

 High quality and reliability

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

 High quality and reliability

 Fault tolerance
Bjarne Däcker’s Licentiate Thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

wanted
productivity

wanted
productivity

no down-time

wanted
productivity

no down-time

something that always works

wanted

wanted

money

wanted

money

money

wanted

money

money

money

wanted

money

money

money

it’s a rich man’s world!

wanted

money

money

money

it’s a rich man’s world!

General vs Domain Specific

Telecom

General vs Domain Specific

Telecom

C++/Java

General vs Domain Specific

Telecom

C++/Java

General vs Domain Specific

Telecom

Erlang

C++/Java

General vs Domain Specific

Telecom

Erlang

C++/Java

General vs Domain Specific

Telecom

Erlang

C++/Java

Smaller gap 	

= 	

money!

The Sweet Spot
GUI

Drivers

Middleware	

Coordination	

Control

If the glove fits...

drivers coordination GUI

needs/fit

If the glove fits...

drivers coordination GUI

needs/fit
Telecom

If the glove fits...

drivers coordination GUI

needs/fit

C

Telecom

If the glove fits...

drivers coordination GUI

needs/fit

C

Erlang

Telecom

If our basic tool, the language in which we
design and code our programs, is also
complicated, the language itself becomes part of
the problem rather than part of its solution.	

!

- C.A.R. Hoare

Good Erlang Domains

Good Erlang Domains

 Low latency over throughput

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs
usually performs as well as
programs in other languages,
often way better.	

Jesper Louis Andersen

Other Erlang Domains

Other Erlang Domains

 Messaging - XMPP et al

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

 Vocalink, OpenFlow/LINC

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

 Vocalink, OpenFlow/LINC

 Distributed Databases

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

 Vocalink, OpenFlow/LINC

 Distributed Databases

 Riak, CouchDB, Scalaris

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

 Vocalink, OpenFlow/LINC

 Distributed Databases

 Riak, CouchDB, Scalaris

 Queueing systems

Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches

 Vocalink, OpenFlow/LINC

 Distributed Databases

 Riak, CouchDB, Scalaris

 Queueing systems

 RabbitMQ (AMQP)

The glove fits!

Low
latency Stateful Massively

concurrent Distributed Fault tolerant

Messaging

Webservers

Soft switches

Distributed DBs

Queueing
systems

The Golden Trinity Of Erlang

To Share Or Not To Share

To Share Or Not To Share

Memory

To Share Or Not To Share

Memory

P1

To Share Or Not To Share

Memory

P1 P2

To Share Or Not To Share

Memory

P2

Corrupt

To Share Or Not To Share

MemoryCorrupt

To Share Or Not To Share

Memory MemoryCorrupt

To Share Or Not To Share

Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1 P2

Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt

Message Passing

P1 P2
M

P1 sends M to P2.

Message Passing

P1 P2
M

P1 sends M to P2.

 Every process has a mailbox

Message Passing

P1 P2
M

P1 sends M to P2.

 Every process has a mailbox

 Messages are received:
receive
 {tag, Value} -> Value;
 N when is_integer(N) -> N + 42

end

Failures
Anything that can go wrong, 	

will go wrong	

Murphy

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and

managed

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and

managed

source: http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! ;!
convert(_) ->!
 {error, unknown_day}.!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! .!
!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7!

Erlang encourages offensive programming

 .!
!

Handling Failure

P1 P2

P1 monitors P2.

P1 P2

P1 and P2 are linked.

Intentional
Programming

 a style of programming where the reader of
a program can easily see what the
programmer intended by their code. [1]	

[1] http://www.erlang.org/download/armstrong_thesis_2003.pdf

http://www.erlang.org/download/armstrong_thesis_2003.pdf

Intentional Dictionary
 data retrieval - dict:fetch(Key, Dict) = Val | EXIT

 the programmer knows a specific key should be in the
dictionary and it is an error if it is not. 	

 search - dict:find(Key, Dict) = {ok, Val} | error.

 it is unknown if the key is there or not and both cases must be
dealt with. 	

 test - dict:is_key(Key, Dict) = Boolean

 knowing if a key is present is enough. 	

Benefits of let-it-fail

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Erlang	 @	 3x
Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Productivity with Erlang @ Motorola

 Goal: Development of a mission-critical telecom gateway
for TETRA	

 To be developed from scratch using Erlang and some
drivers in C	

 The gateway translates between proprietary protocols
and the ISI standard	

 Developed using a two – six man team over four year	

 A total of 72 staff months used on the work

Productivity with Erlang @ Motorola

Internal	 storage

input

input

input

input
output

output

output

Function point analysis	

	
 Language agnostic measurement of problem size

Show me the money!

Conservative estimation of the number 	

of inputs, outputs and internal storage

Includes design, box test, system test,
project management efforts

Function Point Analysis of the size of the problem

Isolate Errors

PROPAGATING EXIT SIGNALS

PidA PidB

PidC

PROPAGATING EXIT SIGNALS

PidA PidB

PidC

PROPAGATING EXIT SIGNALS

PidB

{'EXIT', PidA, Reason}

PidC

PROPAGATING EXIT SIGNALS

PidB

PidC

PROPAGATING EXIT SIGNALS

PidC

{'EXIT', PidB, Reason}

PROPAGATING EXIT SIGNALS

TRAPPING AN EXIT SIGNAL

PidA

PidC

PidB

TRAPPING AN EXIT SIGNAL

PidA

PidC

PidB

TRAPPING AN EXIT SIGNAL

{'EXIT', PidA, Reason}

PidC

PidB

TRAPPING AN EXIT SIGNAL

PidC

PidB

© 1999-2012 Erlang Solutions Ltd.

Supervision Trees

45

worker worker

worker workerworker
The OTP library is 	

built on this principle

supervisor

supervisor

© 1999-2012 Erlang Solutions Ltd.

The OTP Supervisor

46

worker workerworker

supervisor

Specifies a default restart strategy
one_for_one
one_for_all
rest_for_one
simple_one_for_one

Child spec for how a child is restarted
permanent | transient | temporary

Supervisors

Simple Manager/Worker Pattern

Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

????

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Product	

Owner

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Business benefits of supervisors

Business benefits of supervisors

 Only one process dies

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture
that supports

iterative development

Preparing for battle

Source: http://www.finerareprints.com/print_detail.html?stock_no=17122

http://www.finerareprints.com/print_detail.html?stock_no=17122

When do I get my ROI?

Proto-typing Development Live

Speed

When do I get my ROI?

Proto-typing Development Live

Speed

Some Cool Technology

When do I get my ROI?

Proto-typing Development Live

Speed

Some Cool Technology

Erlang

When do I get my ROI?

Live

Speed

Pr
ot

o-
typ

ing

Dev
elo

pm
en

t

When do I get my ROI?

Live

Speed

Pr
ot

o-
typ

ing

Dev
elo

pm
en

t

Erlang

When do I get my ROI?

Live

Speed

Pr
ot

o-
typ

ing

Dev
elo

pm
en

t

Erlang

Some Cool Technology

Erlang/OTP

Middleware

Middleware

 Design Patterns

Middleware

 Design Patterns

 Fault Tolerance

Middleware

 Design Patterns

 Fault Tolerance

 Distribution

Middleware

 Design Patterns

 Fault Tolerance

 Distribution

 Upgrades

Middleware

 Design Patterns

 Fault Tolerance

 Distribution

 Upgrades

 Packaging

Middleware

 Design Patterns

 Fault Tolerance

 Distribution

 Upgrades

 Packaging

OTP Tools

OTP Tools

 Development

OTP Tools

 Development

 Test Frameworks

OTP Tools

 Development

 Test Frameworks

 Release & Deployment

OTP Tools

 Development

 Test Frameworks

 Release & Deployment

 Debugging & Monitoring

OTP Benefits

OTP Benefits

 Less Code

OTP Benefits

 Less Code

 Less Bugs

OTP Benefits

 Less Code

 Less Bugs

 More Solid Code

OTP Benefits

 Less Code

 Less Bugs

 More Solid Code

 More Tested Code More Free Time

SPECIFIC
CALLBACK
MODULE

GENERIC
BEHAVIOUR

MODULE

Server

process

Behaviours

OTP Behaviours

OTP Behaviours

 Servers

OTP Behaviours

 Servers

 Finite State Machines

OTP Behaviours

 Servers

 Finite State Machines

 Event Handlers

OTP Behaviours

 Servers

 Finite State Machines

 Event Handlers

 Supervisors

OTP Behaviours

 Servers

 Finite State Machines

 Event Handlers

 Supervisors

 Applications

Nasty Things
Handled by OTP

Nasty Things
Handled by OTP

Who are you gonna call?

Client Server

call(Name, Message) ->!
 Name ! {request, self(), Message},!
 receive!
 {reply, Reply} -> Reply!
 end.

Client Server

{request, Pid, Message}

call(Name, Message) ->!
 Name ! {request, self(), Message},!
 receive!
 {reply, Reply} -> Reply!
 end.

reply(Pid, Reply) ->!
 Pid ! {reply, Reply}.

Client Server

{request, Pid, Message}

{reply, Reply}

Client Server

{request, Pid, Message}

{reply, Reply}

Client Server

{request, Pid, Message}

{reply, Reply}

Server 2

Client Server

{request, Pid, Message}

{reply, Reply}

Server 2

{reply, Reply}

Client Server

{request, Pid, Message}

{reply, Reply}

Server 2

{reply, Reply}

call(Name, Msg) ->!
 Ref = make_ref(),!
 Name ! {request, {Ref, self()}, Msg},!
 receive {reply, Ref, Reply} -> Reply end.!
!
reply({Ref, Pid}, Reply) ->!
 Pid ! {reply, Ref, Reply}.

Client Server

Server 2

{reply, Reply}

call(Name, Msg) ->!
 Ref = make_ref(),!
 Name ! {request, {Ref, self()}, Msg},!
 receive {reply, Ref, Reply} -> Reply end.!
!
reply({Ref, Pid}, Reply) ->!
 Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

Client Server

Server 2

call(Name, Msg) ->!
 Ref = make_ref(),!
 Name ! {request, {Ref, self()}, Msg},!
 receive {reply, Ref, Reply} -> Reply end.!
!
reply({Ref, Pid}, Reply) ->!
 Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

{reply, ???, Reply}

PidA PidB

PidA PidB

{request, {Ref, PidA}, Msg}

PidA

PidA

call(Name, Msg) ->!
 Ref = erlang:monitor(process, Name),!
 Name ! {request, {Ref, self()}, Msg},!
 receive!
! {reply, Ref, Reply} ->!
! erlang:demonitor(Ref),!
! Reply;!
! {'DOWN', Ref, process, _Name, _Reason} ->!
! {error, no_proc}!
 end.

PidA PidB

PidA PidB

{request, {Ref, PidA}, Msg}

PidA PidB
{reply, Ref, Reply}

PidA

{'DOWN', Ref, process, PidB, Reason}

PidA

call(Name, Msg) ->!
 Ref = erlang:monitor(process, Name),!
 Name ! {request, {Ref, self()}, Msg},!
 receive!
! {reply, Ref, Reply} ->!
! erlang:demonitor(Ref, [flush]),!
! Reply;!
! {'DOWN', Ref, process, _Name, _Reason} ->!
! {error, no_proc}!
 end.

{'DOWN', Ref, process, PidB, Reason}

Dealing with deadlocks

Dealing with deadlocks

 7 years of coding Erlang

Dealing with deadlocks

 7 years of coding Erlang

 Time spent on deadlock issues….

Dealing with deadlocks

 7 years of coding Erlang

 Time spent on deadlock issues….

 1 hour (due to lack of experience with OTP)

Selling Others on Erlang

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1
2

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1
2

3

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1
2

3 4

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1
2

3 4

5

© 1999-2012 Erlang Solutions Ltd.

In Theory...
You conquer the TALC group by group in one
smooth motion

66

1
2

3 4

5

but it’s just an illusion :-(

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

Crack

© 1999-2012 Erlang Solutions Ltd.

Cracks and a Chasm

67

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

CrackChasm

The Chasm

The Chasm
From Visionaries to Pragmatists

The Chasm
From Visionaries to Pragmatists

Visionaries buy a change agent to get a radical
discontinuity

The Chasm
From Visionaries to Pragmatists

Visionaries buy a change agent to get a radical
discontinuity

Pragmatists want a productivity improvement for
existing operations

The Chasm
From Visionaries to Pragmatists

Visionaries buy a change agent to get a radical
discontinuity

Pragmatists want a productivity improvement for
existing operations

Pragmatists want evolution, not revolution

The Chasm
From Visionaries to Pragmatists

Visionaries buy a change agent to get a radical
discontinuity

Pragmatists want a productivity improvement for
existing operations

Pragmatists want evolution, not revolution

Pragmatists wants references

© 1999-2012 Erlang Solutions Ltd.

Visionaries vs Pragmatists

69

Visionaries have four characteristics that
alienate Pragmatists:

© 1999-2012 Erlang Solutions Ltd.

Visionaries vs Pragmatists

Lack of respect for their colleagues’ experiences

69

Visionaries have four characteristics that
alienate Pragmatists:

© 1999-2012 Erlang Solutions Ltd.

Visionaries vs Pragmatists

Lack of respect for their colleagues’ experiences

Takes greater interest in technology than in their industry

69

Visionaries have four characteristics that
alienate Pragmatists:

© 1999-2012 Erlang Solutions Ltd.

Visionaries vs Pragmatists

Lack of respect for their colleagues’ experiences

Takes greater interest in technology than in their industry

Fail to recognise the importance of existing product
infrastructure

69

Visionaries have four characteristics that
alienate Pragmatists:

© 1999-2012 Erlang Solutions Ltd.

Visionaries vs Pragmatists

Lack of respect for their colleagues’ experiences

Takes greater interest in technology than in their industry

Fail to recognise the importance of existing product
infrastructure

Overall disruptiveness

69

Visionaries have four characteristics that
alienate Pragmatists:

© 1999-2012 Erlang Solutions Ltd.

Whole Product Planning

70

Generic	

Product

Standards	

&	

Procedures Additional	

Software

System	

Integration

Training	

&	

Support

Installation	

&	

Debugging

Additional	

Hardware

Anything else	

to achieve your 	

compelling reason to buy

Simplified for chasm crossing

© 1999-2012 Erlang Solutions Ltd.

Whole Product Planning

70

Generic	

Product

Standards	

&	

Procedures Additional	

Software

System	

Integration

Training	

&	

Support

Installation	

&	

Debugging

Additional	

Hardware

Anything else	

to achieve your 	

compelling reason to buy

Simplified for chasm crossing

= marketing promise 	

to win the sale

© 1999-2012 Erlang Solutions Ltd.

Erlang Whole Product 1/2

Generic product:

Erlang compiler and runtime

Additional software:

rich library shipped with each release

many open source libraries

Training & support:

ESL provides many courses

ErlangCamp also provides training

71

© 1999-2012 Erlang Solutions Ltd.

Erlang Whole Product 2/2

System integration:

mostly case-by-case

few public success stories

Installation & Debugging:

Adequate functionalities for installing applications

Wombat: ESL tool for Operations and Maintenance

Good debugging tools, but not well publicised

72

The EuroVision Link

source: http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
source: http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?
v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz

source: http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

 Or why Java is used more than Erlang…

http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz
http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

The EuroVision Link

source: http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
source: http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?
v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz

source: http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

Lots of wrapping

 Or why Java is used more than Erlang…

http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz
http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

The EuroVision Link

source: http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
source: http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?
v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz

source: http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

Lots of wrapping The real McCoy

 Or why Java is used more than Erlang…

http://sawyerspeaks.com/wp-content/uploads/2011/04/larry_ellison_oracle_ceo.jpg
http://cache1.asset-cache.net/gc/489477445-conchita-wurst-of-austria-performs-on-stage-gettyimages.jpg?v=1&c=IWSAsset&k=2&d=X7WJLa88Cweo9HktRLaNXrTYXDJ3BsApHeprRdCRbmiAEiSzJ73mXeJ82T5OvCcz
http://i1.cdnds.net/14/19/618x411/uktv-eurovision-song-contest-2014-25.jpg

Source: http://www.despair.com/mistakes.html

http://www.despair.com/mistakes.html

Learning Erlang

Learning Erlang

 ESL training courses

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html

Learning Erlang

 ESL training courses

 Learn You Some Erlang 	

 http://learnyousomeerlang.com/

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html

Learning Erlang

 ESL training courses

 Learn You Some Erlang 	

 http://learnyousomeerlang.com/

 Use the erlang-questions mailing list

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html

Learning Erlang

 ESL training courses

 Learn You Some Erlang 	

 http://learnyousomeerlang.com/

 Use the erlang-questions mailing list

 Do it hands-on

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html

Learning Erlang

 ESL training courses

 Learn You Some Erlang 	

 http://learnyousomeerlang.com/

 Use the erlang-questions mailing list

 Do it hands-on

 Give it time to sink in!!!

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html

Elixir

Elixir

 Built on top of the Erlang VM

Elixir

 Built on top of the Erlang VM

 More Ruby-like syntax

Elixir

 Built on top of the Erlang VM

 More Ruby-like syntax

 Hygienic macros - easy to do DSLs

Elixir

 Built on top of the Erlang VM

 More Ruby-like syntax

 Hygienic macros - easy to do DSLs

 But… you still have to learn the Erlang
programming model

Key building blocks

Key building blocks

 Share nothing processes

Key building blocks

 Share nothing processes

 Message passing

Key building blocks

 Share nothing processes

 Message passing

 Fail fast approach

Key building blocks

 Share nothing processes

 Message passing

 Fail fast approach

 Link/monitor concept

Key building blocks

 Share nothing processes

 Message passing

 Fail fast approach

 Link/monitor concept

 You can deal with failures in a sensible manner
because you have a language for them.

Cruising with Erlang

Cruising with Erlang

 Understand the failure model

Cruising with Erlang

 Understand the failure model

 Embrace failure!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use supervision patterns to deliver
business value

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use supervision patterns to deliver
business value

 Stay in charge!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use supervision patterns to deliver
business value

 Stay in charge!

