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Why this talk?

 Explain the tech foundation for WhatsApp’s 
succes

 Understand the design decisions that makes 
Erlang unique

 Show how Erlang’s features delivers 
business value

 Spread the Erlang love



Religious Connection

source:http://www.taoistsecret.com/taoistgod.html

Er Lang Shen - Chinese God w/!
a 3rd truth seeing eye

source: http://www.tripadvisor.com/Attraction_Review-g1152320-d1799218-Reviews-Erlang_Temple-Zunhua_Hebei.html

Erlang Temple in Zunhua
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19,000,000,000 reasons to use Erlang



WhatsApp

 Real-time Messaging	


 Text and Pictures	


 Group chat
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 10 Erlang engineers

 ~500M monthly users

 19B msg/day in / 40B msg/day out

 147M concurrent connections

 peak: 324K msg/s in / 712K msg/s out

 



WhatsApp Hardware

 ~550 servers	


 2x2690v2 Ivy Bridge 10-core (40 threads 
total) 	


 64-512 GB RAM	


 SSD	


 >11,000 cores



WhatsApp Software

 FreeBSD 9.2	


 Erlang R16B01 (with patches)
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Bet365

 Resarch team Re-did a Java system in Erlang 
as a POC

 Results:	


 5x connected users in load test	


 4x rate of data change	


 Better utilisation of CPU resources

 How to convince the developers to switch?
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Bet365 showed that Erlang…

 makes programming fun

 scales and is reliable

 has enough depth to be interesting

 solves difficult problems with simple code

 Results:

 production teams quickly started to 
appreciate the benefits of Erlang

 did not want to go back to Java
https://www.erlang-solutions.com/resources/webinars/webinar-recording-erlang-gamblingonline-betting



Riak from Basho

 Distributed NoSQL database	


 Dynamo inspired key/value store	


 Erlang & C/C++	


 Powers Rovio, Danish Health Services and 
many more



Erlang History
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 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly 

 High quality and reliability 

 Fault tolerance 
Bjarne Däcker’s Licentiate Thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957
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General vs Domain Specific

Telecom

Erlang

C++/Java

Smaller gap 	

= 	


money! 



The Sweet Spot
GUI

Drivers

Middleware	

Coordination	


Control
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If the glove fits...

drivers coordination GUI

needs/fit

C

Erlang

Telecom



If our basic tool, the language in which we 
design and code our programs, is also 
complicated, the language itself becomes part of 
the problem rather than part of its solution.	

!

- C.A.R. Hoare
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Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs 
usually performs as well as 
programs in other languages, 
often way better.	


Jesper Louis Andersen
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Other Erlang Domains

 Messaging - XMPP et al

 ejabberd, MongooseIM

 Webservers

 Yaws, Chicago Boss, Cowboy

 Payment switches & soft switches 

 Vocalink, OpenFlow/LINC

 Distributed Databases

 Riak, CouchDB, Scalaris 

 Queueing systems

 RabbitMQ (AMQP)



The glove fits!

Low 
latency Stateful Massively 

concurrent Distributed Fault tolerant

Messaging

Webservers

Soft switches

Distributed DBs

Queueing 
systems



The Golden Trinity Of Erlang
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Message Passing

P1 P2
M

P1 sends M to P2.

 Every process has a mailbox

 Messages are received:
receive 
 {tag, Value} -> Value; 
 N when is_integer(N) -> N + 42 

end



Failures
Anything that can go wrong, 	

will go wrong	


Murphy



Failures
Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors



Failures
Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures



Failures
Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures



Failures

Most programming paradigmes are 
fault in-tolerant

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures



Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures



Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures



Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design



Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and 

managed



Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and 

managed

source: http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak


Let It Fail
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         {error, unknown_day}.!
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Let It Fail
convert(monday)    -> 1;!
convert(tuesday)   -> 2;!
convert(wednesday) -> 3;!
convert(thursday)  -> 4;!
convert(friday)    -> 5; !
convert(saturday)  -> 6;!
convert(sunday)    -> 7!

Erlang encourages offensive programming

                       .!
!
  



Handling Failure

P1 P2

P1 monitors P2.

P1 P2

P1 and P2 are linked.



Intentional 
Programming

 a style of programming where the reader of 
a program can easily see what the 
programmer intended by their code. [1]	


[1] http://www.erlang.org/download/armstrong_thesis_2003.pdf

http://www.erlang.org/download/armstrong_thesis_2003.pdf


Intentional Dictionary
 data retrieval - dict:fetch(Key, Dict) = Val | EXIT 

     the programmer knows a specific key should be in the 
dictionary and it is an error if it is not. 	


 search - dict:find(Key, Dict) = {ok, Val} | error. 

     it is unknown if the key is there or not and both cases must be 
dealt with. 	


 test - dict:is_key(Key, Dict) = Boolean 

     knowing if a key is present is enough. 	
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Benefits of let-it-fail

code	  that	  solves	  	  
the	  problem

Erlang	  @	  3x
Source:	  h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	  Mobility	  component	  breakdown



Productivity with Erlang @ Motorola

 Goal: Development of a mission-critical telecom gateway 
for TETRA	


 To be developed from scratch using Erlang and some 
drivers in C	


 The gateway translates between proprietary protocols 
and the ISI standard	


 Developed using a two – six man team over four year	


 A total of 72 staff months used on the work



Productivity with Erlang @ Motorola 

Internal	  storage

input

input

input

input
output

output

output

Function point analysis	

	
 Language agnostic measurement of problem size



Show me the money!

Conservative estimation of the number 	

of inputs, outputs and internal storage

Includes design, box test, system test, 
project management efforts

Function Point Analysis of the size of the problem



Isolate Errors
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TRAPPING AN EXIT SIGNAL

PidC

PidB
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Supervision Trees

45

worker worker

worker workerworker
The OTP library is 	


built on this principle

supervisor

supervisor



© 1999-2012 Erlang Solutions Ltd.

The OTP Supervisor

46

worker workerworker

supervisor

Specifies a default restart strategy
one_for_one 
one_for_all 
rest_for_one 
simple_one_for_one 

Child spec for how a child is restarted
permanent | transient | temporary



Supervisors



Simple Manager/Worker Pattern



Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

????

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/


Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Product	

Owner

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/
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 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture 
that supports 

iterative development



Preparing for battle

Source: http://www.finerareprints.com/print_detail.html?stock_no=17122

http://www.finerareprints.com/print_detail.html?stock_no=17122
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Client Server

Server 2

call(Name, Msg) ->!
    Ref = make_ref(),!
    Name ! {request, {Ref, self()},    Msg},!
    receive {reply, Ref, Reply} -> Reply end.!
!
reply({Ref, Pid}, Reply) ->!
    Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

{reply, ???, Reply}
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PidA

call(Name, Msg) ->!
    Ref = erlang:monitor(process, Name),!
    Name ! {request, {Ref, self()}, Msg},!
    receive!
!    {reply, Ref, Reply} ->!
!      erlang:demonitor(Ref),!
!      Reply;!
!    {'DOWN', Ref, process, _Name, _Reason} ->!
!      {error, no_proc}!
    end.
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PidA

call(Name, Msg) ->!
    Ref = erlang:monitor(process, Name),!
    Name ! {request, {Ref, self()}, Msg},!
    receive!
!    {reply, Ref, Reply} ->!
!      erlang:demonitor(Ref, [flush]),!
!      Reply;!
!    {'DOWN', Ref, process, _Name, _Reason} ->!
!      {error, no_proc}!
    end.

{'DOWN', Ref, process, PidB, Reason}
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Dealing with deadlocks

 7 years of coding Erlang

 Time spent on deadlock issues….

 1 hour (due to lack of experience with OTP)
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Visionaries vs Pragmatists

Lack of respect for their colleagues’ experiences

Takes greater interest in technology than in their industry

Fail to recognise the importance of existing product 
infrastructure

Overall disruptiveness

69
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© 1999-2012 Erlang Solutions Ltd.

Erlang Whole Product 1/2

Generic product: 

Erlang compiler and runtime 

Additional software: 

rich library shipped with each release 

many open source libraries 

Training & support: 

ESL provides many courses 

ErlangCamp also provides training
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© 1999-2012 Erlang Solutions Ltd.

Erlang Whole Product 2/2

System integration: 

mostly case-by-case 

few public success stories 

Installation & Debugging: 

Adequate functionalities for installing applications 

Wombat: ESL tool for Operations and Maintenance 

Good debugging tools, but not well publicised

72
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Learning Erlang

 ESL training courses

 Learn You Some Erlang 	


 http://learnyousomeerlang.com/

 Use the erlang-questions mailing list

 Do it hands-on

 Give it time to sink in!!! 

http://learnyousomeerlang.com/
http://www.erlang.org/static/doc/mailinglist.html
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Elixir

 Built on top of the Erlang VM

 More Ruby-like syntax

 Hygienic macros - easy to do DSLs

 But… you still have to learn the Erlang 
programming model 
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Key building blocks

 Share nothing processes

 Message passing

 Fail fast approach

 Link/monitor concept

 You can deal with failures in a sensible manner 
because you have a language for them.
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