dutchworks

Practical COQRS

Seven League Boots or just a fairy tale?
Allard Buijze @ Goto Amsterdam 2011

Allard Buijze

» Software Architect at Dutchworks

» formerly known as JTeam

» 10 years of web development experience

» Strong believer in DDD and CQRS

» Developer and initiator of Axon Framework

» CORS Framework for Java
» www.axonframework.org

dutchworks

Viewer advisory

This is a true story, but some slides
have been dramatized. Names have
been changed to protect the innocent.

@ Contains nerdy language

Once upon a time,
in a country far far away

There was a great man,
W|th blg blue boots

They are able to tackle
the ultlmateewl . Complex1ty

Everyone wanted them...

But one man took them further...

He said: “Use one for commands,
and one for queries...”

','.‘,
F/ /
Q\ (\ (~
N 2
"N
.
Yy
»
!
» 4 0
.
, -

=T

“... and free the world of
Complexity. Forever!!”

eSS

',', N
7 /
Q\ (\ 7
N 2
\\‘
-
Yy
>
v
» } g
.
, e

e,
S
S

IT lived happily ever after...

/AR -

But will it work in my world?

» Deadlines, Pressure

» Changing requirements, Renewed insights

» Performance

» Team experience, Learning curve

dutchworks

CQRS - A brief introduction

» Separation of components ©
» Command Handling
» Execution of queries /

commands queries

» Why?

» Non-functional requirements
» Concurrency and staleness
» Domain model complexity

dutchworks

Non functional requirements

» Response time requirements

» Google search: < 100ms
» Credit card payment: 10 seconds

» Command to query ratio

» 1t0107?
» 1to 100 ?

dutchworks

Concurrency and staleness

» Multiple users acting on the same data

» Decisions are based on stale data

dutchworks

Domain model

» Simplified representation of concepts in a domain to solve specific problems

» Applications solve 2 types of problems:

» Change state
» Expose state

» CORS: Create a domain model for each purpose

dutchworks

CQRS Overview

Domain :1

Model wm m

command > Command persist

Handling S s

< Component
result

Storage

Domain
Models

update

Storage

dutchworks

CQRS supports scalability

» Embrace staleness

» And get: scalability

dutchworks

CQRS + EDA Overview

Domain :1

Model wm m

command

> Command persist

Handling S s

< Component
result

Storage
publish

Event
Handling
Components

Domain -r=

Models

update

Storage

dutchworks

Scalability

Orders
-

Customers

Shipping
R =

Inventory
=

Event Bus

o1 Command Handler

m Event Handler

dutchworks

Scalability

Orders
& =

Customers

o —

Shipping
& =

Inventory

B =

Event Bus

Front end

/EI

CJ

Back end

>

(J

Reporting

/GB

J

dutchworks

CQRS in our world

» Scalability is barely an issue for most applications

» Complexity is what hits most of them!

dutchworks

Evolution of complexity

~-CQRS =—Layered Architecture

dutchworks

Evolution of a domain model

[Customer }

i
=T

dutchworks

Evolution of a domain model

dutchworks

Evolution of a domain model

dutchworks

Complexity...

private static final String PLAYER_COCKPIT_WATERFALL_ITEMS_QUERY =

w4

E LE T Pe.NEWS ITEM ordlinalf) + " s antity type, publich date as sort_date "+
SEEEE: NEWS_ITEM

"poster_player_id = :playerld " +

"where active = true and ("

"or poster_player_idin (" +

"select destination_friend_id from friendship where origin_friend_id = :playerld " +

or projectin (...

"select distinct project_id " +

“from donation" +

"where donor_participant_id = :playe Sta t u S - IO K’

or project in (...

e

NION ALL
UO DONATION

"where status ='OK" and (" +

» player_id = :playerld " +

o status = “OK’

"select destination_friend_id from friendship where origin_friend_id = :playerld" +

o
= OF raised_via_playerin (...

IO ALL FRIENDSHIP

“select id, " + Entity Type.FRIENDS _date " +
“from friendship " +
"where origin_friend_id = :playerld or (origin_friend_id in (" +

“select destination_friend_id from friendship where origin_friend_id = :playerld " +

") and destination_friend_id <> :playerld)" + d utC hWO r ks"

0"

CQRS and complexity

» Clear bounded contexts

» Decoupling between components

» No SQL “join-join-join” hell

» Clear definition of “core API”

» In: Commands
» Out: Events

dutchworks

Models in CQRS

» Command Model

» “Core-API”
» Driven by behavior

» Query

» Table-per-view
» Driven by data needs

dutchworks

Command model

» Only store information that influences a command’s outcome (i.e. behavior)

>

Built up of aggregates (consistency boundaries)

Order date
Order status
Order amount

Order description

X ¥ 4 X

dutchworks

Query model

» Stores what you want to see, the way you want to see it

» Table per view
» Persistent view model

» Watch your normalization!

» Don’t over-normalize
» Must fit Ul information need

dutchworks

Evolution of complexity

—=CQRS =—Layered Architecture

dutchworks

CQRS applied — In a project

» Project: On-line Bridge platform

» Challenges & Requirements:

» Scalability, Extensibility
» “Perceived performance”, real-time feedback
» Fraud prevention/detection

» Tools & Frameworks:

» Java, Google Web Toolkit, Spring Framework,
Axon Framework

dutchworks

Axon Framework

» Java

» Provides building blocks for CQRS applications

» Event Bus, Command Bus, annotation based handlers
» Support for Event Sourcing

» Sagas

» Given-when-then test fixtures

» Current version: 1.2

» More information: AxonFramework.org

dutchworks

Application components

Game engine

* Keep track of game state
* Enforces Bridge rules

* Process commands

Tournament engine

B g « Game coordination
== .- -+ Playerrankin Event Store
Front-end — - Y &
Disol 927y WU+ Process commands * Stores events
|sphay game §tate o * Source of engine
Catch user actions state

Query component
e Pushes events to clients
* Executes queries

s

<

dutchworks

Bounded Contexts

» Game and Tournament

» Clearly separated
» Each has a separate “core API”

» Improves maintainability

» Easy to implement new tournament types

» Contexts are “synchronized” using Sagas

dutchworks

Event Sourcing

>

>

Storage option for command model

Past events contain invaluable data

Fraud detection a posteriori

Build new features

» Concept of “Credits” was added later
» Management reports based data from day 1

Gameplay analysis

dutchworks

Scalability

» Scaling out is straightforward

» No need to change architectural features
» No need to change application logic

» Step 1: Each context on a different machine

» Publish events over a message broker (e.g. RabbitMQ)

» Step 2: Duplicate a context

» Route commands based on targeted aggregate identifier
» Consistent hashing

dutchworks

Only for Bridge?

Types of projects using Axon Framework

» Electronic Medical Record

>

>

License management for e-learning
Pension value calculations

Surgical tool tracking

dutchworks

Only blue skies & puffy clouds?

» Modeling not always easy

» Modeling skills are absolutely required
» Don’t be afraid to change your model

» Event Sourcing

» Takes getting used to

» Makes aggregate boundaries very strict

» Requires developer discipline

» Event Sourcing makes model changes a bit harder

dutchworks

Conclusion

» CQRS is a very simple architectural pattern

» When using events, it allows for easy scalability and extensibility

» Has a learning curve, but ROI is fast

» A good tool in the toolbox

» More “Seven League Boots” than “Fairy tale”

dutchworks

Thank you

More information:

* Cgrsinfo.com
« DomainDrivenDesign.org
 AxonFramework.org

Don’t forget to vote!

»

dutchworks

