
Practical CQRS

Allard Buijze @ Goto Amsterdam 2011

Seven League Boots or just a fairy tale?

Allard Buijze

Software Architect at Dutchworks

formerly known as JTeam

10 years of web development experience

Strong believer in DDD and CQRS

Developer and initiator of Axon Framework

CQRS Framework for Java

www.axonframework.org

This is a true story, but some slides
have been dramatized. Names have

been changed to protect the innocent.

Contains nerdy language

The End

But will it work in my world?

Deadlines, Pressure

Changing requirements, Renewed insights

Performance

Team experience, Learning curve

CQRS – A brief introduction

Separation of components

Command Handling

Execution of queries

Why?

Non-functional requirements

Concurrency and staleness

Domain model complexity

Non functional requirements

Response time requirements

Google search: < 100ms

Credit card payment: 10 seconds

Command to query ratio

1 to 10 ?

1 to 100 ?

Concurrency and staleness

Multiple users acting on the same data

Decisions are based on stale data

Domain model

Simplified representation of concepts in a domain to solve specific problems

Applications solve 2 types of problems:

Change state

Expose state

CQRS: Create a domain model for each purpose

CQRS Overview

CQRS supports scalability

Embrace staleness

And get: scalability

CQRS + EDA Overview

Scalability

Scalability

CQRS in our world

Scalability is barely an issue for most applications

Complexity is what hits most of them!

Evolution of complexity

CQRS Layered Architecture

Evolution of a domain model

Evolution of a domain model

Evolution of a domain model

Complexity…

private static final String PLAYER_COCKPIT_WATERFALL_ITEMS_QUERY =

 "(" +

 "select id, " + EntityType.NEWS_ITEM.ordinal() + " as entity_type, publish_date as sort_date " +

 "from news_item " +

 "where active = true and (" +

 "poster_player_id = :playerId " +

 "or poster_player_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId " +

 ") " +

 "or project_id in (" +

 "select distinct project_id " +

 "from donation " +

 "where donor_participant_id = :playerId and status = 'OK'" +

 ")" +

 "or project_id in (" +

 "select project_id from ambassador_project where player_id = :playerId " +

 "))" +

 ") union all (" +

 "select id, " + EntityType.DONATION.ordinal() + " as entity_type, approval_date as sort_date " +

 "from donation " +

 "where status = 'OK' and (" +

 "donor_participant_id = :playerId " +

 "or donor_participant_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId" +

 ")" +

 "or raised_via_player_id = :playerId " +

 "or raised_via_player_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId" +

 ") " +

 ") " +

 ") union all (" +

 "select id, " + EntityType.FRIENDSHIP.ordinal() + " as entity_type, created as sort_date " +

 "from friendship " +

 "where origin_friend_id = :playerId or (origin_friend_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId " +

 ") and destination_friend_id <> :playerId)" +

 ") ";

UNION ALL

UNION ALL

NEWS_ITEM

DONATION

FRIENDSHIP

SELECT

status = ‘OK’

or raised_via_player in (…

or project in (…

or project in (…

status = ‘OK’

CQRS and complexity

Clear bounded contexts

Decoupling between components

No SQL “join-join-join” hell

Clear definition of “core API”

In: Commands

Out: Events

Models in CQRS

Command Model

“Core-API”

Driven by behavior

Query

Table-per-view

Driven by data needs

Command model

Only store information that influences a command’s outcome (i.e. behavior)

Built up of aggregates (consistency boundaries)

Order date

Order status

Order amount

Order description

Query model

Stores what you want to see, the way you want to see it

Table per view

Persistent view model

Watch your normalization!

Don’t over-normalize

Must fit UI information need

Evolution of complexity

CQRS Layered Architecture

CQRS applied – In a project

Project: On-line Bridge platform

Challenges & Requirements:

Scalability, Extensibility

“Perceived performance”, real-time feedback

Fraud prevention/detection

Tools & Frameworks:

Java, Google Web Toolkit, Spring Framework,

Axon Framework

Axon Framework

Java

Provides building blocks for CQRS applications

Event Bus, Command Bus, annotation based handlers

Support for Event Sourcing

Sagas

Given-when-then test fixtures

Current version: 1.2

More information: AxonFramework.org

Application components

Front-end
• Display game state
• Catch user actions

Game engine
• Keep track of game state
• Enforces Bridge rules
• Process commands

Tournament engine
• Game coordination
• Player ranking
• Process commands

Query component
• Pushes events to clients
• Executes queries

Event Store
• Stores events
• Source of engine

state

Bounded Contexts

Game and Tournament

Clearly separated

Each has a separate “core API”

Improves maintainability

Easy to implement new tournament types

Contexts are “synchronized” using Sagas

Event Sourcing

Storage option for command model

Past events contain invaluable data

Fraud detection a posteriori

Build new features

Concept of “Credits” was added later

Management reports based data from day 1

Gameplay analysis

Scalability

Scaling out is straightforward

No need to change architectural features

No need to change application logic

Step 1: Each context on a different machine

Publish events over a message broker (e.g. RabbitMQ)

Step 2: Duplicate a context

Route commands based on targeted aggregate identifier

Consistent hashing

Only for Bridge?

Electronic Medical Record

License management for e-learning

Pension value calculations

Surgical tool tracking

...

Types of projects using Axon Framework

Only blue skies & puffy clouds?

Modeling not always easy

Modeling skills are absolutely required

Don’t be afraid to change your model

Event Sourcing

Takes getting used to

Makes aggregate boundaries very strict

Requires developer discipline

Event Sourcing makes model changes a bit harder

Conclusion

CQRS is a very simple architectural pattern

When using events, it allows for easy scalability and extensibility

Has a learning curve, but ROI is fast

A good tool in the toolbox

More “Seven League Boots” than “Fairy tale”!

Thank you

More information:

• CqrsInfo.com

• DomainDrivenDesign.org

• AxonFramework.org

Don’t forget to vote!

