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Design, techniques and tools
for larger JavaScript applications

Karl Krukow (kkr@trifork.com),
Goto Amsterdam, Oct. 13th, 2011
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About me

PhD, University of Aarhus, Theory-stuff :)

Working at Trifork for about 5 years on  Web, 
JavaScript, Java/JEE, Ruby/Rails, Clojure, Mobile, 
Conferences and Training.

Last two years on iOS on Trifork in the financial 
sector.

Recently part of a start-up doing mobile 
automated testing: LessPainful ApS                        
(http://www.lesspainful.com)
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Have you ever 
found yourself 

in a project like this...
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Development Time
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Development Time

Unstructured
No clear architecture

No consistency
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Runtime
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Unless we do something:
The way we organize our source 
code at development time...
Significantly affect its behavior at 
runtime!

With JavaScript
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Server side
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Server side
We often have non-functional requirements

Maintainability, extensibility, understandability, quality, 

Productivity, Performance, ...

torsdag den 13. oktober 11



Server side
We often have non-functional requirements

Maintainability, extensibility, understandability, quality, 

Productivity, Performance, ...

We have techniques and tools to help

Architecture, modularity, reuse, separation of concerns

automated testing & continuous integration

Tool support (static analysis, compilers, IDEs, profilers)
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Why so different?
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Some key properties of 
JavaScript as a language

Linkage of different scripts/modules via global variables.

Delivered as source code, as opposed to executable 
binaries.

Compilation is done by browser: compiles scripts as it receives them

Dynamically typed

Dynamic Objects (general containers)

Prototypal inheritance

Objects inherit from objects (no classes)
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JavaScript in the large

torsdag den 13. oktober 11



JavaScript in the large
JavaScript(ECMA-262 3rd edition)is focused on flexibility 
and ease of use:

poorly suited for writing large & complex applications.
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JavaScript in the large
JavaScript(ECMA-262 3rd edition)is focused on flexibility 
and ease of use:

poorly suited for writing large & complex applications.

Here are some of the problems for large-scale use

language flaws (e.g., type conversion, scope rules, numbers...)

global namespace / missing module system (packages)

missing encapsulation

everything is mutable - even methods on objects

program information hard to use by tools (e.g., static typing)
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“Larger” projects
(whatever that means)
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“Larger” projects
(whatever that means)

This may or may not be a problem for you,       
except when your app scales in one or more of:

size and complexity

development team: size and composition          
(new people, different skills)

time: stretches over years of development 
and maintenance.
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Theme of this talk: 
What can we do?
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Theme of this talk: 
What can we do?

Rationale part (“the theory”)

intro: helpful technologies and techniques

Practical part (“the code”):                     
open source sample application with a strict architecture 
and a JavaScript tool-chain.

a modular MVC architecture (using custom events)

advanced tooling (compilation, type-check, lazy-loading) 

automated testing (unit, integration and functional)
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Compiler+VM Technology
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Compiler+VM Technology
Google Dart 

ClojureScript (Clojure -> JS)

Cappuccino (Objective-J -> JS)

CoffeeScript (lightweight, “local” JS compilation)

Google Closure Compiler (JS -> JS), 

Traceur (JS.Next->JS)

Google Web Toolkit (Java -> JS)

JSIL (.NET/CIL -> JS)

...
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Differences in compilers
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Differences in compilers

“whitespace”
pretty print

whole-program optimizing 
optional typing, multiple targets

local optimization 
aka. “minification”
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Differences in compilers

“whitespace”
pretty print

whole-program optimizing 
optional typing, multiple targets

jsmin

local optimization 
aka. “minification”

YUICompres,
uglifyjs

closure simple mode

closure compiler
advanced mode,
           dartc

Clojure- 
Script
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This talk assumes you 
are staying in JavaScript.

torsdag den 13. oktober 11



Google Closure Compiler
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Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler
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Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

Several modes - the interesting one is “advanced 
mode”.

whole-program analysis (all js files + extern must be supplied).

optimizations (e.g., dead-code elimination, constant folding/
propagation)

optional type-checking, @private access, ...

lazy-loading of modules
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propagation)
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Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

Several modes - the interesting one is “advanced 
mode”.

whole-program analysis (all js files + extern must be supplied).

optimizations (e.g., dead-code elimination, constant folding/
propagation)

optional type-checking, @private access, ...

lazy-loading of modules

Requires writing JavaScript code in a particular way.

Very under-appreciated! Not just yet another minifier!
torsdag den 13. oktober 11



Typical JS Application 
composition

Code actually 
used at runtime

Total amount of 
code
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Local optimization
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Whole program analysis
& Closure Tools

ç
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Whole program analysis
& Closure Tools

ç

ç
ç

ç

App. base modules

Other Modules
 loaded by need
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Closure Library
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Closure Library
HUGE JavaScript library used by Google.

Symbiotic with closure compiler advanced mode, which makes 
it SMALL when used with compiler.
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Closure Library
HUGE JavaScript library used by Google.

Symbiotic with closure compiler advanced mode, which makes 
it SMALL when used with compiler.

Highlights (apart from expected of a JS library)

Dependency/module system goog.provide, goog.require.

“Interfaces”, “Enums”, “Class”-based inheritance system.

(custom) event system supporting bubbling, capture, 
preventDefault and cancel.

extensible UI components with a well-defined lifecycle, and 
which support custom events.
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JSDoc annotations     
and tooling
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JSDoc annotations     
and tooling

Several advantages to using JSDoc:

Standardized => tool support

Google uses JSDoc annotations for “talking” to the 
compiler (e.g., denoting types and access/visibility).

Many IDEs understand them, and can help with 
warnings, code-completion, inline documentation.

Makes you document your code and think about 
what your public API is.
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Several advantages to using JSDoc:

Standardized => tool support

Google uses JSDoc annotations for “talking” to the 
compiler (e.g., denoting types and access/visibility).

Many IDEs understand them, and can help with 
warnings, code-completion, inline documentation.
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Automated Testing

js-test-driver (http://code.google.com/p/js-test-driver/)

unit tests executing in real browsers 

ide and commandline

SinonJS for spies,stubs,mocks

Selenium Webdriver (“selenium 2.0”)

De-facto standard for automated functional/acceptance 
testing.
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JavaScript Application 
Architecture

In the past few years there have been focus 
on JavaScript application architecture.  
People like:

Nicholas Zakas (ex YAHOO, JS app arch)

Rebecca Murphey (jQuery vs “enterprise”)

Peter Michaux (MVC Architecture)

Ray Ryan (Google, GWT app arch.)
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Common theme
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Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions
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Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions

Strict file organization - matches modules

Many small files, each file one concern (like good class design)

Separation of concerns (e.g., MVC, MVP)

view management, communication/network access, domain model,...

Custom events

extend the DOM Level 2 event model to app-specific events
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A note on custom events
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A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical
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Custom events: like DOM-Level 
2 except

App.-specific and -
generated
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DOM events.
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A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

Bubbles and cancels just like 
DOM events.

Helps with loose coupling

browser

component

application

mouse
(x,y,btn)

autocomplete 
select item

(item)

user selected
(u)

Concrete

Abstract
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MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Dependency
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View
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Controller
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MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Component domain objects

controllers

Dependency

Custom 
Events
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How to do it in practice?
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Example: chatroom++
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Example: chatroom++
Communication uses WebSockets+Stomp on Torquebox

Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
HornetQ).
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Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
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JavaScript Tool-chain

Google closure compiler and linter/checker.

Jetbrains’ RubyMine as IDE (JSDoc comments, code “intelligence”)

functional tests: selenium-webdriver for automating browsers

unit tests: js-test-driver + SinonJS
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Example: chatroom++
Communication uses WebSockets+Stomp on Torquebox

Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
HornetQ).

JavaScript Tool-chain

Google closure compiler and linter/checker.

Jetbrains’ RubyMine as IDE (JSDoc comments, code “intelligence”)

functional tests: selenium-webdriver for automating browsers

unit tests: js-test-driver + SinonJS

JavaScript Client:

Google Closure Library for compatibility with Closure compiler.

Stomple JavaScript library (STOMP over websockets).

Model-View-Controller with Custom Events.

Lazy-module loading, strict file organization, optional types. 
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DEMO
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Two Solutions Compared

One: jQuery, jQuery-UI, and stilts-stomp.js. 

Minified using UglifyJS.

No strict architecture, but does separate view and 
“everything else”, uses custom events.

Two: Google Closure Library and Stomple-0.99.

Both libraries are written to be compatible with Closure 
Compiler Advanced mode.

Modular Model-View-Controller arch. using custom events.
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Development time

jQuery (233kB)

jQuery-UI-min
(367kB)

stilts-stomp.js (7kB)

app.js (two files) (6.3kB)

Total: 603,3 kB

Closure Library
(approx. 1.2MB)

Stomple-0.99.js (39,6kB)

“App” (several files...)
(35kB)

Total: ~ 1.3 MB
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Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Total: 290 kB
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Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Closure compiled: 71kB

Total: 290 kB Total: 71 kB
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Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Closure compiled: 71kB

Total: 290 kB

Webkit Closure compiled: 64kB

Total: 71 kB

or optionally
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Summary
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Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.
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Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.

Tooling is not great, but there are tools that can help:

Compiler technologies are superior tools. There are significant 
differences in compiler techs. Closure is not just another minifier.

Although not perfect, IDEs and testing tools are getting better.

Custom events, MVC-like patterns, file-organization 
help with structuring your application.

Example: https://github.com/krukow/advanced_javascript_tooling 
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