
torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



http://www.doxdesk.com/updates/2009.html

torsdag den 13. oktober 11

http://www.doxdesk.com/updates/2009.html
http://www.doxdesk.com/updates/2009.html


Design, techniques and tools
for larger JavaScript applications

Karl Krukow (kkr@trifork.com),
Goto Amsterdam, Oct. 13th, 2011

torsdag den 13. oktober 11

mailto:kkr@trifork.com
mailto:kkr@trifork.com


About me

PhD, University of Aarhus, Theory-stuff :)

Working at Trifork for about 5 years on  Web, 
JavaScript, Java/JEE, Ruby/Rails, Clojure, Mobile, 
Conferences and Training.

Last two years on iOS on Trifork in the financial 
sector.

Recently part of a start-up doing mobile 
automated testing: LessPainful ApS                        
(http://www.lesspainful.com)

torsdag den 13. oktober 11

http://www.lesspainful.com
http://www.lesspainful.com


torsdag den 13. oktober 11



Have you ever 
found yourself 

in a project like this...

torsdag den 13. oktober 11



Development Time

torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



Development Time

Unstructured
No clear architecture

No consistency

torsdag den 13. oktober 11



Runtime

torsdag den 13. oktober 11



torsdag den 13. oktober 11



torsdag den 13. oktober 11



Unless we do something:
The way we organize our source 
code at development time...
Significantly affect its behavior at 
runtime!

With JavaScript

torsdag den 13. oktober 11



Server side

torsdag den 13. oktober 11



Server side
We often have non-functional requirements

Maintainability, extensibility, understandability, quality, 

Productivity, Performance, ...

torsdag den 13. oktober 11



Server side
We often have non-functional requirements

Maintainability, extensibility, understandability, quality, 

Productivity, Performance, ...

We have techniques and tools to help

Architecture, modularity, reuse, separation of concerns

automated testing & continuous integration

Tool support (static analysis, compilers, IDEs, profilers)

torsdag den 13. oktober 11



Why so different?

torsdag den 13. oktober 11



Some key properties of 
JavaScript as a language

Linkage of different scripts/modules via global variables.

Delivered as source code, as opposed to executable 
binaries.

Compilation is done by browser: compiles scripts as it receives them

Dynamically typed

Dynamic Objects (general containers)

Prototypal inheritance

Objects inherit from objects (no classes)

torsdag den 13. oktober 11



JavaScript in the large

torsdag den 13. oktober 11



JavaScript in the large
JavaScript(ECMA-262 3rd edition)is focused on flexibility 
and ease of use:

poorly suited for writing large & complex applications.

torsdag den 13. oktober 11

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf


JavaScript in the large
JavaScript(ECMA-262 3rd edition)is focused on flexibility 
and ease of use:

poorly suited for writing large & complex applications.

Here are some of the problems for large-scale use

language flaws (e.g., type conversion, scope rules, numbers...)

global namespace / missing module system (packages)

missing encapsulation

everything is mutable - even methods on objects

program information hard to use by tools (e.g., static typing)

torsdag den 13. oktober 11

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf


“Larger” projects
(whatever that means)

torsdag den 13. oktober 11



“Larger” projects
(whatever that means)

This may or may not be a problem for you,       
except when your app scales in one or more of:

torsdag den 13. oktober 11



“Larger” projects
(whatever that means)

This may or may not be a problem for you,       
except when your app scales in one or more of:

size and complexity

torsdag den 13. oktober 11



“Larger” projects
(whatever that means)

This may or may not be a problem for you,       
except when your app scales in one or more of:

size and complexity

development team: size and composition          
(new people, different skills)

torsdag den 13. oktober 11



“Larger” projects
(whatever that means)

This may or may not be a problem for you,       
except when your app scales in one or more of:

size and complexity

development team: size and composition          
(new people, different skills)

time: stretches over years of development 
and maintenance.

torsdag den 13. oktober 11



Theme of this talk: 
What can we do?

torsdag den 13. oktober 11



Theme of this talk: 
What can we do?

Rationale part (“the theory”)

intro: helpful technologies and techniques

Practical part (“the code”):                     
open source sample application with a strict architecture 
and a JavaScript tool-chain.

a modular MVC architecture (using custom events)

advanced tooling (compilation, type-check, lazy-loading) 

automated testing (unit, integration and functional)

torsdag den 13. oktober 11



Compiler+VM Technology

torsdag den 13. oktober 11



Compiler+VM Technology

“J
ava

Sc
rip

t i
s a

sse
mb

ly 
lan

gu
ag
e f

or 
the

 w
eb”

 

   
   

   
   

   
   

   
   

   
   

   
   

   
-E
ric

 M
eij

er

torsdag den 13. oktober 11



Compiler+VM Technology
Google Dart 

ClojureScript (Clojure -> JS)

Cappuccino (Objective-J -> JS)

CoffeeScript (lightweight, “local” JS compilation)

Google Closure Compiler (JS -> JS), 

Traceur (JS.Next->JS)

Google Web Toolkit (Java -> JS)

JSIL (.NET/CIL -> JS)

...
“J
ava

Sc
rip

t i
s a

sse
mb

ly 
lan

gu
ag
e f

or 
the

 w
eb”

 

   
   

   
   

   
   

   
   

   
   

   
   

   
-E
ric

 M
eij

er

torsdag den 13. oktober 11



Differences in compilers

torsdag den 13. oktober 11



Differences in compilers

“whitespace”
pretty print

whole-program optimizing 
optional typing, multiple targets

local optimization 
aka. “minification”

torsdag den 13. oktober 11



Differences in compilers

“whitespace”
pretty print

whole-program optimizing 
optional typing, multiple targets

jsmin

local optimization 
aka. “minification”

YUICompres,
uglifyjs

closure simple mode

closure compiler
advanced mode,
           dartc

Clojure- 
Script

torsdag den 13. oktober 11



This talk assumes you 
are staying in JavaScript.

torsdag den 13. oktober 11



Google Closure Compiler

torsdag den 13. oktober 11



Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

torsdag den 13. oktober 11



Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

Several modes - the interesting one is “advanced 
mode”.

whole-program analysis (all js files + extern must be supplied).

optimizations (e.g., dead-code elimination, constant folding/
propagation)

optional type-checking, @private access, ...

lazy-loading of modules

torsdag den 13. oktober 11



Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

Several modes - the interesting one is “advanced 
mode”.

whole-program analysis (all js files + extern must be supplied).

optimizations (e.g., dead-code elimination, constant folding/
propagation)

optional type-checking, @private access, ...

lazy-loading of modules

Requires writing JavaScript code in a particular way.

torsdag den 13. oktober 11



Google Closure Compiler
Extensible optimizing JavaScript-to-JavaScript compiler

Several modes - the interesting one is “advanced 
mode”.

whole-program analysis (all js files + extern must be supplied).

optimizations (e.g., dead-code elimination, constant folding/
propagation)

optional type-checking, @private access, ...

lazy-loading of modules

Requires writing JavaScript code in a particular way.

Very under-appreciated! Not just yet another minifier!
torsdag den 13. oktober 11



Typical JS Application 
composition

Code actually 
used at runtime

Total amount of 
code

torsdag den 13. oktober 11



Typical JS Application 
composition

Code actually 
used at runtime

Total amount of 
code

Your code

torsdag den 13. oktober 11



Typical JS Application 
composition

Code actually 
used at runtime

Total amount of 
code

Your code

Libraries

torsdag den 13. oktober 11



ç
ç

Typical JS Application 
composition

Code actually 
used at runtime

Total amount of 
code

Your code

Libraries

torsdag den 13. oktober 11



Local optimization

ç

ç

torsdag den 13. oktober 11



Local optimization

ç

ç

ç
ç

torsdag den 13. oktober 11



Whole program analysis
& Closure Tools

ç

ç

torsdag den 13. oktober 11



Whole program analysis
& Closure Tools

ç

ç

ç

App. base modules

torsdag den 13. oktober 11



Whole program analysis
& Closure Tools

ç

ç
ç

ç

App. base modules

Other Modules
 loaded by need

torsdag den 13. oktober 11



Closure Library

torsdag den 13. oktober 11



Closure Library
HUGE JavaScript library used by Google.

Symbiotic with closure compiler advanced mode, which makes 
it SMALL when used with compiler.

torsdag den 13. oktober 11



Closure Library
HUGE JavaScript library used by Google.

Symbiotic with closure compiler advanced mode, which makes 
it SMALL when used with compiler.

Highlights (apart from expected of a JS library)

Dependency/module system goog.provide, goog.require.

“Interfaces”, “Enums”, “Class”-based inheritance system.

(custom) event system supporting bubbling, capture, 
preventDefault and cancel.

extensible UI components with a well-defined lifecycle, and 
which support custom events.

torsdag den 13. oktober 11



JSDoc annotations     
and tooling

torsdag den 13. oktober 11



JSDoc annotations     
and tooling

Several advantages to using JSDoc:

Standardized => tool support

Google uses JSDoc annotations for “talking” to the 
compiler (e.g., denoting types and access/visibility).

Many IDEs understand them, and can help with 
warnings, code-completion, inline documentation.

Makes you document your code and think about 
what your public API is.

torsdag den 13. oktober 11



JSDoc annotations     
and tooling

Several advantages to using JSDoc:

Standardized => tool support

Google uses JSDoc annotations for “talking” to the 
compiler (e.g., denoting types and access/visibility).

Many IDEs understand them, and can help with 
warnings, code-completion, inline documentation.

Makes you document your code and think about 
what your public API is.

Example IDEs: WebStorm, RubyMine, Spket, Aptana

torsdag den 13. oktober 11



JSDoc annotations     
and tooling

Several advantages to using JSDoc:

Standardized => tool support

Google uses JSDoc annotations for “talking” to the 
compiler (e.g., denoting types and access/visibility).

Many IDEs understand them, and can help with 
warnings, code-completion, inline documentation.

Makes you document your code and think about 
what your public API is.

Example IDEs: WebStorm, RubyMine, Spket, Aptana

torsdag den 13. oktober 11



Automated Testing

js-test-driver (http://code.google.com/p/js-test-driver/)

unit tests executing in real browsers 

ide and commandline

SinonJS for spies,stubs,mocks

Selenium Webdriver (“selenium 2.0”)

De-facto standard for automated functional/acceptance 
testing.

torsdag den 13. oktober 11

http://code.google.com/p/js-test-driver/
http://code.google.com/p/js-test-driver/


JavaScript Application 
Architecture

In the past few years there have been focus 
on JavaScript application architecture.  
People like:

Nicholas Zakas (ex YAHOO, JS app arch)

Rebecca Murphey (jQuery vs “enterprise”)

Peter Michaux (MVC Architecture)

Ray Ryan (Google, GWT app arch.)

torsdag den 13. oktober 11



Common theme

torsdag den 13. oktober 11



Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions

torsdag den 13. oktober 11



Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions

Strict file organization - matches modules

Many small files, each file one concern (like good class design)

torsdag den 13. oktober 11



Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions

Strict file organization - matches modules

Many small files, each file one concern (like good class design)

Separation of concerns (e.g., MVC, MVP)

view management, communication/network access, domain model,...

torsdag den 13. oktober 11



Common theme
Modularity - reusable modules, loose coupling.

clearly def. public interface and private state+functions

Strict file organization - matches modules

Many small files, each file one concern (like good class design)

Separation of concerns (e.g., MVC, MVP)

view management, communication/network access, domain model,...

Custom events

extend the DOM Level 2 event model to app-specific events

torsdag den 13. oktober 11



A note on custom events

torsdag den 13. oktober 11



A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

torsdag den 13. oktober 11



A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

Bubbles and cancels just like 
DOM events.

torsdag den 13. oktober 11



A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

Bubbles and cancels just like 
DOM events.

Helps with loose coupling

torsdag den 13. oktober 11



A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

Bubbles and cancels just like 
DOM events.

Helps with loose coupling

browser

component

application

Concrete

Abstract

torsdag den 13. oktober 11



A note on custom events

Custom events: like DOM-Level 
2 except

App.-specific and -
generated

Logical rather than physical

Bubbles and cancels just like 
DOM events.

Helps with loose coupling

browser

component

application

mouse
(x,y,btn)

autocomplete 
select item

(item)

user selected
(u)

Concrete

Abstract

torsdag den 13. oktober 11



MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Dependency

torsdag den 13. oktober 11



MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Dependency

Custom 
Events

torsdag den 13. oktober 11



MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Component domain objects

controllers

Dependency

Custom 
Events

torsdag den 13. oktober 11



MVC
(Yes, again)

Model 
Singleton

View
Singleton

Controller
Singleton

Component domain objects

controllers

Dependency

Custom 
Events

torsdag den 13. oktober 11



How to do it in practice?

torsdag den 13. oktober 11



Example: chatroom++

torsdag den 13. oktober 11



Example: chatroom++
Communication uses WebSockets+Stomp on Torquebox

Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
HornetQ).

torsdag den 13. oktober 11



Example: chatroom++
Communication uses WebSockets+Stomp on Torquebox

Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
HornetQ).

JavaScript Tool-chain

Google closure compiler and linter/checker.

Jetbrains’ RubyMine as IDE (JSDoc comments, code “intelligence”)

functional tests: selenium-webdriver for automating browsers

unit tests: js-test-driver + SinonJS

torsdag den 13. oktober 11



Example: chatroom++
Communication uses WebSockets+Stomp on Torquebox

Messages are ‘instant’ & can be transactional with reliable delivery (JMS via STOMP on 
HornetQ).

JavaScript Tool-chain

Google closure compiler and linter/checker.

Jetbrains’ RubyMine as IDE (JSDoc comments, code “intelligence”)

functional tests: selenium-webdriver for automating browsers

unit tests: js-test-driver + SinonJS

JavaScript Client:

Google Closure Library for compatibility with Closure compiler.

Stomple JavaScript library (STOMP over websockets).

Model-View-Controller with Custom Events.

Lazy-module loading, strict file organization, optional types. 

torsdag den 13. oktober 11



DEMO

torsdag den 13. oktober 11



Two Solutions Compared

One: jQuery, jQuery-UI, and stilts-stomp.js. 

Minified using UglifyJS.

No strict architecture, but does separate view and 
“everything else”, uses custom events.

Two: Google Closure Library and Stomple-0.99.

Both libraries are written to be compatible with Closure 
Compiler Advanced mode.

Modular Model-View-Controller arch. using custom events.

torsdag den 13. oktober 11



Development time

jQuery (233kB)

jQuery-UI-min
(367kB)

stilts-stomp.js (7kB)

app.js (two files) (6.3kB)

Total: 603,3 kB

Closure Library
(approx. 1.2MB)

Stomple-0.99.js (39,6kB)

“App” (several files...)
(35kB)

Total: ~ 1.3 MB

torsdag den 13. oktober 11



Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Total: 290 kB

torsdag den 13. oktober 11



Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Closure compiled: 71kB

Total: 290 kB Total: 71 kB

torsdag den 13. oktober 11



Production

jQuery-min
(90kB)

jQuery-UI-min
(197kB)

app+stilts-stomp (3kB)

Closure compiled: 71kB

Total: 290 kB

Webkit Closure compiled: 64kB

Total: 71 kB

or optionally

torsdag den 13. oktober 11



Summary

torsdag den 13. oktober 11



Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.

torsdag den 13. oktober 11



Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.

Tooling is not great, but there are tools that can help:

Compiler technologies are superior tools. There are significant 
differences in compiler techs. Closure is not just another minifier.

Although not perfect, IDEs and testing tools are getting better.

torsdag den 13. oktober 11



Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.

Tooling is not great, but there are tools that can help:

Compiler technologies are superior tools. There are significant 
differences in compiler techs. Closure is not just another minifier.

Although not perfect, IDEs and testing tools are getting better.

Custom events, MVC-like patterns, file-organization 
help with structuring your application.

torsdag den 13. oktober 11



Summary
JavaScript is not well-suited for large-scale application 
development. We must add “something”

Requires much discipline, structure, convention.

Poor tradition and literature about client-side architecture.

Tooling is not great, but there are tools that can help:

Compiler technologies are superior tools. There are significant 
differences in compiler techs. Closure is not just another minifier.

Although not perfect, IDEs and testing tools are getting better.

Custom events, MVC-like patterns, file-organization 
help with structuring your application.

Example: https://github.com/krukow/advanced_javascript_tooling 

torsdag den 13. oktober 11

https://github.com/krukow/advanced_javascript_tooling
https://github.com/krukow/advanced_javascript_tooling


torsdag den 13. oktober 11


