

230 Million
Tweets per day

2 Billion
Queries per day

< 10 s
Indexing latency

50 ms
Avg. query response time

Earlybird - Realtime Search @twitter

Michael Busch
@michibusch
michael@twitter.com
buschmi@apache.org

mailto:michael@twitter.com
mailto:michael@twitter.com
mailto:buschmi@apache.org
mailto:buschmi@apache.org

Agenda

‣ Introduction

- Search Architecture

- Inverted Index 101

- Memory Model & Concurrency

- Top Tweets

Earlybird - Realtime Search @twitter

Introduction

Introduction

• Twitter acquired Summize in 2008

• 1st gen search engine based on MySQL

Introduction

• Next gen search engine based on Lucene

• Improves scalability and performance by orders or magnitude

• Open Source

Realtime Search @twitter

Agenda

- Introduction

‣ Search Architecture

- Inverted Index 101

- Memory Model & Concurrency

- Top Tweets

Search Architecture

Search Architecture

• Ingester pre-processes Tweets for search

• Geo-coding, URL expansion, tokenization, etc.

Ingester
Tweets

Search Architecture

• Tweets are serialized to MySQL in Thrift format

Thrift
MySQL
Master MySQL

Slaves

Ingester
Tweets

Earlybird

• Earlybird reads from MySQL slaves

• Builds an in-memory inverted index in real time

Thrift
MySQL
Master MySQL

Slaves

Ingester
Tweets

Earlybird
Index

Blender

Earlybird
Index

Blender
Thrift

Thrift

• Blender is our Thrift service aggregator

• Queries multiple Earlybirds, merges results

Realtime Search @twitter

Agenda

- Introduction

- Search Architecture

‣ Inverted Index 101

- Memory Model & Concurrency

- Top Tweets

Inverted Index 101

Inverted Index 101

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

Table with 6 documents

Example from:
Justin Zobel , Alistair Moffat,
Inverted files for text search engines,
ACM Computing Surveys (CSUR)
v.38 n.2, p.6-es, 2006

Inverted Index 101

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Inverted Index 101

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Query: keeper

Inverted Index 101

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Query: keeper

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

00000101VInt compression:

Values 0 <= delta <= 127 need
one byte

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

11000110VInt compression:

Values 128 <= delta <= 16384
need two bytes

00011001

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

11000110VInt compression:

First bit indicates whether next
byte belongs to the same value

00011001

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

11000110VInt compression: 00011001

• Variable number of bytes - a VInt-encoded posting can not be written as a
primitive Java type; therefore it can not be written atomically

Posting list encoding

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

5 10 8985 2 90998 90Delta encoding:

Read direction

• Each posting depends on previous one; decoding only possible in old-to-new
direction

• With recency ranking (new-to-old) no early termination is possible

Posting list encoding

• By default Lucene uses a combination of delta encoding and VInt
compression

• VInts are expensive to decode

• Problem 1: How to traverse posting lists backwards?

• Problem 2: How to write a posting atomically?

Posting list encoding in Earlybird

int (32 bits)

docID
24 bits

max. 16.7M

textPosition
8 bits

max. 255

• Tweet text can only have 140 chars

• Decoding speed significantly improved compared to delta and VInt decoding
(early experiments suggest 5x improvement compared to vanilla Lucene with
FSDirectory)

Posting list encoding in Earlybird

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

Earlybird encoding:

Read direction

5 15 9000 9002 100000 100090

Early query termination

Doc IDs to encode: 5, 15, 9000, 9002, 100000, 100090

Earlybird encoding:

Read direction

5 15 9000 9002 100000 100090

E.g. 3 result are requested: Here
we can terminate after reading 3

postings

Posting list encoding - Summary

• ints can be written atomically in Java

• Backwards traversal easy on absolute docIDs (not deltas)

• Every posting is a possible entry point for a searcher

• Skipping can be done without additional data structures as binary search,
even though there are better approaches which should be explored

• On tweet indexes we need about 30% more storage for docIDs compared to
delta+Vints; compensated by compression of complete segments

• Max. segment size: 2^24 = 16.7M tweets

Realtime Search @twitter

Agenda

- Introduction

- Search Architecture

- Inverted Index 101

‣ Memory Model & Concurrency

- Top Tweets

Memory Model &
Concurrency

Inverted index components

Dictionary

Posting list storage

?

Inverted index components

Dictionary

Posting list storage

?

Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Per term we store different
kinds of metadata: text pointer,
frequency, postings pointer, etc.

Term dictionary

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

0
1
2
3
4
5
6

term text pool

0

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0 p0 f00
1
2
3
4
5
6

c a t
t0

Term dictionary

1

0

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0

t1

p0

p1

f0

f1

0
1
2
3
4
5
6

c a t f o o
t0 t1

Term dictionary

1

0

2

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0

t1

t2

p0

p1

p2

f0

f1

f2

0
1
2
3
4
5
6

c a t f o o b a r
t0 t1 t2

Term dictionary

Term dictionary

• Number of objects << number of terms

• O(1) lookups

• Easy to store more term metadata by adding additional parallel arrays

Inverted index components

Parallel arraysDictionary

pointer to the most recently
indexed posting for a term

Posting list storage

?

Inverted index components

Parallel arraysDictionary

pointer to the most recently
indexed posting for a term

Posting list storage

?

• Store many single-linked lists of different lengths space-efficiently

• The number of java objects should be independent of the number of lists or
number of items in the lists

• Every item should be a possible entry point into the lists for iterators, i.e.
items should not be dependent on other items (e.g. no delta encoding)

• Append and read possible by multiple threads in a lock-free fashion (single
append thread, multiple reader threads)

• Traversal in backwards order

Posting lists storage - Objectives

Memory management

= 32K int[]

4 int[]
pools

Memory management

= 32K int[]

4 int[]
pools

Each pool can
be grown

individually by
adding 32K

blocks

Memory management

• For simplicity we can forget about the blocks for now and think of the pools
as continuous, unbounded int[] arrays

• Small total number of Java objects (each 32K block is one object)

4 int[]
pools

Memory management

• Slices can be allocated in each pool

• Each pool has a different, but fixed slice size

21

24

27

211

slice size

Adding and appending to a list

21

24

27

211

slice size

available

allocated

current list

Adding and appending to a list

21

24

27

211

slice size

Store first two
postings in this slice

available

allocated

current list

Adding and appending to a list

21

24

27

211

slice size

When first slice is full, allocate another one in second pool

available

allocated

current list

Adding and appending to a list

21

24

27

211

slice size

available

allocated

current list

Allocate a slice on each level as list grows

Adding and appending to a list

21

24

27

211

slice size

available

allocated

current list

On upper most level one list can own multiple slices

Posting list format

int (32 bits)

docID
24 bits

max. 16.7M

textPosition
8 bits

max. 255

• Tweet text can only have 140 chars

• Decoding speed significantly improved compared to delta and VInt decoding
(early experiments suggest 5x improvement compared to vanilla Lucene with
FSDirectory)

Addressing items

• Use 32 bit (int) pointers to address any item in any list unambiguously:

int (32 bits)

poolIndex
2 bits
0-3

offset in slice
1-11 bits

depends on pool

sliceIndex
19-29 bits

depends on pool

• Nice symmetry: Postings and address pointers both fit into a 32 bit int

Linking the slices

21

24

27

211

slice size

available

allocated

current list

Linking the slices

21

24

27

211

slice size

available

allocated

current list

Parallel arraysDictionary

pointer to the last posting indexed for a term

Concurrency - Definitions

• Pessimistic locking

• A thread holds an exclusive lock on a resource, while an action is
performed [mutual exclusion]

• Usually used when conflicts are expected to be likely

• Optimistic locking

• Operations are tried to be performed atomically without holding a lock;
conflicts can be detected; retry logic is often used in case of conflicts

• Usually used when conflicts are expected to be the exception

Concurrency - Definitions

• Non-blocking algorithm

Ensures, that threads competing for shared resources do not have their
execution indefinitely postponed by mutual exclusion.

• Lock-free algorithm

A non-blocking algorithm is lock-free if there is guaranteed system-wide
progress.

• Wait-free algorithm

A non-blocking algorithm is wait-free, if there is guaranteed per-thread
progress.

* Source: Wikipedia

Concurrency

• Having a single writer thread simplifies our problem: no locks have to be used
to protect data structures from corruption (only one thread modifies data)

• But: we have to make sure that all readers always see a consistent state of
all data structures -> this is much harder than it sounds!

• In Java, it is not guaranteed that one thread will see changes that another
thread makes in program execution order, unless the same memory barrier is
crossed by both threads -> safe publication

• Safe publication can be achieved in different, subtle ways. Read the great
book “Java concurrency in practice” by Brian Goetz for more information!

Java Memory Model

• Program order rule

Each action in a thread happens-before every action in that thread that comes
later in the program order.

• Volatile variable rule

A write to a volatile field happens-before every subsequent read of that same
field.

• Transitivity

If A happens-before B, and B happens-before C, then A happens-before C.

* Source: Brian Goetz: Java Concurrency in Practice

Concurrency

0RAM

int x;

Cache

Thread 1 Thread 2

time

Concurrency

0RAM

int x;

Cache 5

Thread 1 Thread 2

x = 5;

Thread A writes x=5 to cache

time

Concurrency

0RAM

int x;

Cache 5

Thread 1 Thread 2

x = 5;

while(x != 5);time

This condition will likely
never become false!

Concurrency

0RAM

int x;

Cache

Thread 1 Thread 2

time

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

Thread A writes b=1 to RAM,
because b is volatile

b = 1;

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

Read volatile b

b = 1;

int dummy = b;

while(x != 5);

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

• Program order rule: Each action in a thread happens-before every action in
that thread that comes later in the program order.

happens-before

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

happens-before

• Volatile variable rule: A write to a volatile field happens-before every
subsequent read of that same field.

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

happens-before

• Transitivity: If A happens-before B, and B happens-before C, then A
happens-before C.

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

This condition will be
false, i.e. x==5

• Note: x itself doesn’t have to be volatile. There can be many variables like x,
but we need only a single volatile field.

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

Memory barrier

• Note: x itself doesn’t have to be volatile. There can be many variables like x,
but we need only a single volatile field.

Demo

Concurrency

0RAM

int x;

1

Cache

Thread 1 Thread 2

time

volatile int b;

x = 5;5

b = 1;

int dummy = b;

while(x != 5);

Memory barrier

• Note: x itself doesn’t have to be volatile. There can be many variables like x,
but we need only a single volatile field.

Concurrency

IndexWriter IndexReader

time

write 100 docs

maxDoc = 100

in IR.open(): read maxDoc

search upto maxDoc

maxDoc is volatile

write more docs

Concurrency

IndexWriter IndexReader

time

write 100 docs

maxDoc = 100

in IR.open(): read maxDoc

search upto maxDoc

maxDoc is volatile

write more docs

happens-before

• Only maxDoc is volatile. All other fields that IW writes to and IR reads from
don’t need to be!

• Not a single exclusive lock

• Writer thread can always make progress

• Optimistic locking (retry-logic) in a few places for searcher thread

• Retry logic very simple and guaranteed to always make progress

Wait-free

Realtime Search @twitter

Agenda

- Introduction

- Search Architecture

- Inverted Index 101

- Memory Model & Concurrency

‣ Top Tweets

Top Tweets

Signals

• Query-dependent

• E.g. Lucene text score, language

• Query-independent

• Static signals (e.g. text quality)

• Dynamic signals (e.g. retweets)

• Timeliness

Signals

Many Earlybird segments (8M documents each)

Task: Find best tweet in billions
of tweets efficiently

Signals

Many Earlybird segments (8M documents each)

• For top tweets we can’t early terminate as efficiently

• Scoring and ranking billions of tweets is impractical

Query cache

Many Earlybird segments (8M documents each)

Idea: Mark all tweets with high
query-independent scores and only
visit those for top tweets queries

Query results cache

High static score doc

Query cache

Many Earlybird segments (8M documents each)

• A background thread periodically wakes up, executes queries, and stores the
results in the per-segment cache

• Rewriting queries

• User query: q = ‘lucene’

• Rewritten: q’ = ‘lucene AND cached_filter:toptweets’

• Efficient skipping over tweets with low query-independent scores

This clause will be executed as a
Lucene ConstantScoreQuery that
wraps a BitSet or SortedVIntList

Query cache

Many Earlybird segments (8M documents each)

• A background thread periodically wakes up, executes queries, and stores the
results in the per-segment cache

• Configurable per cached query:

• Result set type: BitSet, SortedVIntList

• Execution schedule

• Filter mode: cache-only or hybrid

Query cache

Many Earlybird segments (8M documents each)

• Result set type: BitSet, SortedVIntList

• BitSet for results with many hits

• SortedVIntList for very sparse results

Query cache

Many Earlybird segments (8M documents each)

• Execution schedule

• Per segment: Sleep time between refreshing the cached results

Query cache

Many Earlybird segments (8M documents each)

• Filter mode: cache-only or hybrid

Query cache

• Filter mode: cache-only or hybrid

Read direction

Query cache

• Filter mode: cache-only or hybrid

Read direction

Partially filled segment
(IndexWriter is currently

appending)

Query cache

• Filter mode: cache-only or hybrid

Read direction

Query cache can only be
computed until current

maxDocID

Query cache

• Filter mode: cache-only or hybrid

Read direction

Some time later: More docs in
segment, but query cache was

not updated yet

Query cache

• Filter mode: cache-only or hybrid

Read direction

Cache-only mode: Ignore
documents added to segment

since cache was updatedSearch range

Query cache

• Filter mode: cache-only or hybrid

Read direction

Hybrid mode: Fall back to
original query and execute it on

latest documentsSearch range

Query cache

• Filter mode: cache-only or hybrid

Read direction

Use query cache up to the
cache’s maxDocID

Search range

Query result cache

Many Earlybird segments (8M documents each)

query cache config yml file

Questions?

