
1 | © 2011 Oracle Corporation

2 | © 2011 Oracle Corporation

Java 7 In Action

Using Project Coin and Other Features in Real Code
Stuart W. Marks — Oracle JDK Core Libraries Group

3 | © 2011 Oracle Corporation 3 | © 2011 Oracle Corporation

The following is intended to outline our general product
direction. It is intended for information purposes only, and
may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing
decisions. The development, release, and timing of any
features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

4 | © 2011 Oracle Corporation

Program Agenda

•  Project Coin
– Six small language changes for Java 7
–  Two Coin (plus one NIO feature) covered today
– New feature details

• URLJarFile example
– Review of pre-existing code
– Applying changes
– Before-and-after comparison

5 | © 2011 Oracle Corporation

Project Coin Features

1.  Diamond

2.  Try-with-resources

3.  Multi-catch with more precise rethrow

4.  Enhanced integer literals

5.  Strings in switch

6.  Safe varargs

6 | © 2011 Oracle Corporation

Project Coin Features Demonstrated Today

1.  Diamond

2.  Try-with-resources

3.  Multi-catch with more precise rethrow

4.  Enhanced integer literals

5.  Strings in switch

6.  Safe varargs

7.  NIO.2 File Utilities

Bonus! This isn’t
actually a Project Coin
feature, but it was too
good to pass up.

7 | © 2011 Oracle Corporation

Try-With-Resources

•  A variation of the try-catch-finally statement

•  Allows initialization of a resource variable
– Must be of type AutoCloseable
–  Its close() method is called from a generated finally-block
– Special handling for exceptions thrown by close()

• Useful for avoiding leaks of external objects
–  Files, channels, sockets, SQL statements, ...
– Many JDK classes retrofitted to be AutoCloseable

8 | © 2011 Oracle Corporation

Try-With-Resources
You type this:

try (Resource r = ...) {
 ...
} catch (Exception e) {
 ...
} finally {
 ...
}

Compiler generates this:

try {
 Resource r = null;
 try {
 r = ...;
 ...
 } finally {
 if (r != null)
 r.close();
 }
} catch (Exception e) {
 ...
} finally {
 ...
}

Actually, it’s more complicated
because of the way exceptions
from close() are handled.

9 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow

•  Java’s checked exceptions must either:
– Be handled by a catch clause; or
– Be declared in the throws clause of the containing method.

• Where do checked exceptions come from?
–  The throw statement
–  The throws clause of called methods

10 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow

• When a caught exception is rethrown, what must appear
in the throws clause of the containing method?

•  Java 6 and earlier:
–  the declared type of the exception variable

•  Java 7 and later:
–  If the exception variable is effectively final (not assigned),
– Only the checked exceptions that can be thrown by the try-block

need to appear in the throws clause

11 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow
void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 Object result = future.get(5, SECONDS);
}

// Future.get(long, TimeUnit) is declared with:
// throws InterruptedException, ExecutionException,
// TimeoutException
// this stuff is from java.util.concurrent

How would we catch, clean up, and rethrow?

12 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow
void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (InterruptedException ex) {
 cleanup();
 throw ex;
 } catch (ExecutionException ex) {
 cleanup();
 throw ex;
 } catch (TimeoutException ex) {
 cleanup();
 throw ex;
 }
}

Java 6: multiple catch clauses

13 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow
void exampleMethod(Future future) throws
 Exception
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (Exception ex) {
 cleanup();
 throw ex;
 }
}

Java 6: catch “wider” exception type (considered poor style)

14 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow
void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (InterruptedException|ExecutionException|
 TimeoutException ex) {
 cleanup();
 throw ex;
 }
}

Java 7: multi-catch

15 | © 2011 Oracle Corporation

Multi-Catch and Precise Rethrow
void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (Exception ex) {
 cleanup();
 throw ex;
 }
}

Java 7: precise rethrow (is this good style now?)

16 | © 2011 Oracle Corporation

NIO.2

• NIO.2 Big Features
– Asynchronous I/O
–  Filesystem API

• NIO.2 Conveniences
– Path interface, Paths and Files utility classes
– Access to file permissions, attributes, symbolic links
–  Files.walkFileTree(), Files.readAllLines()
–  Files.copy() – various flavors of copying all bytes

17 | © 2011 Oracle Corporation

Scenario – URLJarFile.java

•  “Based on a true story”

• My JDK 7 task: apply Project Coin features to the JDK
– Concentrated mostly on core libraries

•  Bug 7018392
–  “update URLJarFile.java to use try-with-resources”

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7018392

– Change has been integrated into JDK 7
http://hg.openjdk.java.net/jdk7/jdk7/jdk/rev/6e33b377aa6e

– Simplified here for clarity of presentation

18 | © 2011 Oracle Corporation

Requirements for URLJarFile.retrieve()

• Given a URL …
– Open it
– Download contents into a temporary file
– Create and return a JarFile instance backed by that temp file
– Remove temp file if there was an error
– Don’t leak anything
– Handle all errors without loss of information

19 | © 2011 Oracle Corporation

Original Code
JarFile retrieve(URL url) throws IOException {
 InputStream in = url.openStream();
 OutputStream out = null;
 File tmpFile = null;
 try {
 tmpFile = File.createTempFile("jar_cache", null);
 out = new FileOutputStream(tmpFile);
 int read = 0;
 byte[] buf = new byte[BUF_SIZE];
 while ((read = in.read(buf)) != -1) {
 out.write(buf, 0, read);
 }
 out.close();
 out = null;
 return new JarFile(tmpFile);
 } catch (IOException e) {
 if (tmpFile != null) {
 tmpFile.delete();
 }
 throw e;
 } finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
}

20 | © 2011 Oracle Corporation

DEMO

21 | © 2011 Oracle Corporation

Before vs After
JarFile retrieve(URL url) throws IOException {
 InputStream in = url.openStream();
 OutputStream out = null;
 File tmpFile = null;
 try {
 tmpFile = File.createTempFile("jar_cache", null);
 out = new FileOutputStream(tmpFile);
 int read = 0;
 byte[] buf = new byte[BUF_SIZE];
 while ((read = in.read(buf)) != -1) {
 out.write(buf, 0, read);
 }
 out.close();
 out = null;
 return new JarFile(tmpFile);
 } catch (IOException e) {
 if (tmpFile != null) {
 tmpFile.delete();
 }
 throw e;
 } finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
}

JarFile retrieve(URL url) throws IOException {
 Path tmpFile = Files.createTempFile("jar_cache", null);
 try (InputStream in = url.openStream()) {
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (Throwable t) {
 try {
 Files.delete(tmpFile);
 } catch (Throwable t2) {
 t.addSuppressed(t2);
 }
 throw t;
 }
}

22 | © 2011 Oracle Corporation

Summary

•  Java 7 Features Demonstrated
– NIO.2 Files utilities
–  Try-with-resources
– Multi-catch and precise rethrow

•  Benefits
– Code gets more concise, more correct, more robust

23 | © 2011 Oracle Corporation

What You Should Do Next

•  Learn more about Java 7
–  There’s lots of stuff I haven’t mentioned today

• Documentation
–  http://download.oracle.com/javase/7/docs/index.html

• Download JDK 7
–  http://www.oracle.com/technetwork/java/javase/downloads/index.html

•  View, download, build OpenJDK source code
–  http://openjdk.java.net/

24 | © 2011 Oracle Corporation

Q&A

25 | © 2011 Oracle Corporation

26 | © 2011 Oracle Corporation

27 | © 2011 Oracle Corporation

BACKUP
SLIDES

28 | © 2011 Oracle Corporation

Original Code (Part 1 of 3)
JarFile retrieve(URL url) throws IOException {
 InputStream in = url.openStream();
 OutputStream out = null;
 File tmpFile = null;
 try {
 tmpFile = File.createTempFile("jar_cache", null);
 out = new FileOutputStream(tmpFile);
 ...

29 | © 2011 Oracle Corporation

Original Code (Part 2 of 3)
 ...
 int read = 0;
 byte[] buf = new byte[BUF_SIZE];
 while ((read = in.read(buf)) != -1) {
 out.write(buf, 0, read);
 }
 out.close();
 out = null;
 return new JarFile(tmpFile);
 ...

30 | © 2011 Oracle Corporation

Original Code (Part 3 of 3)
 ...
 } catch (IOException e) {
 if (tmpFile != null) {
 tmpFile.delete();
 }
 throw e;
 } finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
}

31 | © 2011 Oracle Corporation

Code Review

• Has bugs!
–  If in.close() fails, out will remain open
–  If non-IOException is thrown, temp file will not be deleted
– Suppressed exceptions are mishandled

• Other Issues
– Uses null references to keep track of what needs cleanup
– Messy, but alternative is to use nested try-statements

... which is arguably worse
– Pathology: trying to do too much in a single try/catch/finally block

32 | © 2011 Oracle Corporation

Improvement #1 – Use NIO

• Replace copy loop with Files.copy(InputStream, Path)

•  Add various java.nio.file.* imports

• Change java.io.File to java.nio.file.Path

• Call Path.toFile() where necessary to convert back to
java.io.File

• Get rid of BUF_SIZE and OutputStream variables

• Use Files.copy(..., REPLACE_EXISTING)

33 | © 2011 Oracle Corporation

Improvement #1 – Use NIO

Allows us to replace this...

 out = new FileOutputStream(tmpFile);
 int read = 0;
 byte[] buf = new byte[BUF_SIZE];
 while ((read = in.read(buf)) != -1) {
 out.write(buf, 0, read);
 }
 out.close();

With this...

 Files.copy(in, temp, REPLACE_EXISTING);

34 | © 2011 Oracle Corporation

Improvement #1 – Use NIO
JarFile retrieve(URL url) throws IOException {
 InputStream in = url.openStream();
 Path tmpFile = null;
 try {
 tmpFile = Files.createTempFile("jar_cache", null);
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (IOException e) {
 if (tmpFile != null) {
 Files.delete(tmpFile);
 }
 throw e;
 } finally {
 if (in != null) {
 in.close();
 }
 }
}

35 | © 2011 Oracle Corporation

Improvement #2 – Use Try-With-Resources

• Declares a resource variable
– Automatically closed within a finally block
–  Ignored if null

•  Suppressed exceptions from close() are added to a
suppressed exception list

•  Lets us drop our own finally block

36 | © 2011 Oracle Corporation

Improvement #2 – Use Try-With-Resources
JarFile retrieve(URL url) throws IOException {
 Path tmpFile = null;
 try (InputStream in = url.openStream()) {
 tmpFile = Files.createTempFile("jar_cache", null);
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (IOException e) {
 if (tmpFile != null) {
 Files.delete(tmpFile);
 }
 throw e;
 }
}

37 | © 2011 Oracle Corporation

Improvement #3 – Get Rid of Null Sentinel

•  The in and out resources are handled for us now
–  in is a resource variable
–  out is buried inside of Files.copy()

• We can create the temp file first and get rid of special
case null handling

38 | © 2011 Oracle Corporation

Improvement #3 – Get Rid of Null Sentinel
JarFile retrieve(URL url) throws IOException {
 Path tmpFile = Files.createTempFile("jar_cache", null);
 try (InputStream in = url.openStream()) {
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (IOException e) {
 Files.delete(tmpFile);
 throw e;
 }
}

39 | © 2011 Oracle Corporation

Improvement #4 – Catch/Rethrow Throwable

• We want to delete the temp file on any error
– Catch and rethrow Throwable
–  The method still declares throws IOException
– How is this possible?

•  This is the “more precise rethrow” feature of Java 7
–  If the catch block simply rethrows a caught exception,
–  The checked exceptions that can be thrown from the catch block

are inferred from what can be thrown by the try block.

• A subtle but significant change in Java 7!

40 | © 2011 Oracle Corporation

Improvement #4 – Catch/Rethrow Throwable
JarFile retrieve(URL url) throws IOException {
 Path tmpFile = Files.createTempFile("jar_cache", null);
 try (InputStream in = url.openStream()) {
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (Throwable t) {
 Files.delete(tmpFile);
 throw t;
 }
}

41 | © 2011 Oracle Corporation

Improvement #5 – Suppressed Exceptions

•  An exception from Files.delete() could still suppress an
earlier exception

•  Add explicit code to catch them and add them to the
suppressed exception list

• Code gets a bit longer but closes a big hole in exception
handling

42 | © 2011 Oracle Corporation

Improvement #5 – Suppressed Exceptions
JarFile retrieve(URL url) throws IOException {
 Path tmpFile = Files.createTempFile("jar_cache", null);
 try (InputStream in = url.openStream()) {
 Files.copy(in, tmpFile, REPLACE_EXISTING);
 return new JarFile(tmpFile.toFile());
 } catch (Throwable t) {
 try {
 Files.delete(tmpFile);
 } catch (Throwable t2) {
 t.addSuppressed(t2);
 }
 throw t;
 }
}

