
Experience Report!
A “rough and ready” application of Lean and Kanban

Katherine Kirk, 14 Oct 11	

	

kkirk@rallydev.com	

!
This presentation represents the personal

views of the presenter and does not
necessarily reflect the BBC!

!
!

Note: I was not working at Rally during this project!

!  This is NOT!
– A slick presentation of answers!
– Full of metrics you can take back to the office!
– Any specific advice!

What this is and isn’t

!  Story about overcoming edgecases!

!  Rough and ready experience report:!
– Emergency Driven Development!

!

Assumptions!
!  You have basic understanding of

Kanban, Scrum and XP!

Reminder: Potential Differentiators!

Scrum Kanban

Focus on time-boxed iterations! Focus on continuous flow!

Velocity (work done per iteration)! Cycle time (time to delivery)!

Iteration commitment! Limiting Work in Progress (WIP)!

Burn-down! Continuous Flow Diagram!

Scope of work in iteration! Quality of service!

Scales with teams of teams! Scales larger within team !

3 roles, 3 documents, 3 meetings! No prescriptions!

My approach!

!  Context
!  Case study info
!  Applying Lean and Kanban (short

examples)
!  Results
!  Reflection

Agenda

Context!
!  1 small team in a BIG organisation

The BBC structure

Future Media and Technology (FM&T)!

Online Media Group!

OTG!

!
!

Programmes
and On
Demand!UXD! Other divisions… etc

etc etc

iPlayer!

Back end Front end

Bigscreen!

Multiple teams in OMG, e.g….

Test	

Mobile	

 Bigscreen	

PC	

Desktop	

iPlayer

POD

Other depts… UX design
‘Back end’

OTG
‘Front end’

Competition for backlog priority

Test	

Mobile	

 Bigscreen	

PC	

Desktop	

Ops	

Meta���
data	

POD

Other depts… UX design ‘Back end’
OTG ‘Front end’

BIG org… Solve the Sprint Riddle

Sprint 1! Sprint 2! Sprint 3! Sprint 4!

Sprint 1! Sprint 2! Sprint 3! Sprint 4!

Sprint 1! Sprint 2! Sprint 3! Sprint 4!

Team A

Team B

Team C

Back end teams

Sprint 1! Sprint 2! Sprint 3! Sprint 4!

Sprint 1! Sprint 2! Sprint 3! Sprint 4!

Team D

Test Team

Front end teams

Team D requests
back end

components from
Team A, B and C

All components
delivered at approx 3
weeks, if you get top

backlog priority

3 deliverables, 3 days worth of work = 5 weeks minimum delivery time
Minimum delay time: 1 sprint (2 weeks)

Need A, B, C
complete

before
integration

and test!

Integration

Above your team’s workload
!   20 extra deliverables

needed
!   From 8 back-end and

front-end teams
–  Across 3 divisions

Example: co-ordination required

1 feature of main PC app! 1 full device app!
Above your team’s workload
•  30-40 extra deliverables

needed
•  From over 10 back-end and

front-end teams
–  Across 4 divisions

•  Multiple deliverables from 4
external companies

On top of actual dev and test work within PMs team

!  Days of work = weeks of coordination

!  Simple requests = overdose of online
application forms
– Building to dev environment
– Changing or requesting a feeds

Therefore...

!  High pressure
!  Time critical
!  High profile
!  Highly complex system

The experience report!

•  March-September 2010!
▫  Needed rapid and successful response to a fast

paced, very demanding live release schedule!

▫  iPlayer!
▫  Online TV catchup service!

This case study

iPlayer V2 customisation programme	

Bigscreen	

Customising the iPlayer app for 20+ Bigsceen devices

Example: 1 top live device = 3.4 million users

!  General Manager’s new dream!
– Team is realising his new ideas!
– Application has been built: start releasing!!!!

• Results expected ASAP!
•  Live software must be delivered “now”!
•  Stakeholder value must be realised “now”!

– Press and industry expectations are high!
•  ‘Failure’ is unacceptable!

Expectations

!   Small team of 2 dev, 1 tester, 1 delivery manager!

!   Working on ‘obscure/new’ technology!

!   Once application is built…!
–  Average customisation = 3 months!

!   Multiple devices (around 20-30+) waiting for
customisation!
–  Deliver as many as possible!

The scene

!   Delivery Manager and star coder!
–  Car crash management + over functioning!

!   Tester!
–  Resentful and reminding everyone he’s ‘a perm and on loan’

and ‘no-ones his boss here’!
!   2nd Dev!

–  Bad case of second sibling syndrome!
–  Underfunctioning!

I found…

!   Relatively ‘unknown’ technology!
–  New technology and hardware!

•  Browsers in devices at ‘1996 capability’!
•  Trying to meet 2010 design!

–  No specialists in the BBC or industry ‘yet’!

!   Competing for backlog priority against teams with multi-
millions of users!

!   No processes!
!   No tracking system!

!   Part-time, main dev in Scotland, Tester ‘on loan!

General issues

Inherited Application!

Base application!

 Vendor device
customisations	

(Cold wet spaghetti)	

Back end BBC team dependencies	

Team: 1 month
contracts (not rolling)

except the Delivery Manager	

vs	

!   Who is our customer? Too new….!

!   ‘No permission’ to do TDD / refactoring etc!
–  No time for planning or retrospectives!

!   Very reactive ‘go live’ – can’t do sprints!
–  must release ‘on demand’!
–  Fit in with vendor release plans!

!   No‘long term’ strategy: get it out now!
–  Expectation: React ‘instantly’ to industry / customer feedback!
–  Backlog items changing continuously!

!   Dependency ‘hell’!
–  Sprint riddle across all dependencies in FM&T = reactive go live!
–  Low priority in backlogs!

Process issues: ‘Can’t’ do Scrum/XP

So where do you start???!

Do I give up on this project?!

!   Its cutting edge!
!  Great people!

But…!

!  We couldn’t use a text book method!
!  We couldn’t solve everything!

–  What could we use as a guide, to keep us on track?!
!  We couldn’t change a lot at any given time!

–  What could we do today?!
–  What areas should we focus on ASAP?!
–  When do we know we have delivered well?!
–  How do we work around difficulties?!

Consider…

Kanban was promising!

Scrum Kanban

Planned work dominates! Demand work dominates!

High ability to estimate! Low ability to estimate!

Cross functional capabilities! Siloed capabilities!

Self-contained! Unbounded outside
dependencies!

Low variation of work! High variation of work!

(all independent cadences)

prioritize retrospect groom release release

WIP

Target

Ready
Queue

Kanban!

Mixed
Cadences

Target

release release

Kanban workflow!

Product
Backlog

Iteration
2 Weeks

Daily
Meeting

Inspect-
adapt

Iteration
Backlog Product

Increment

Scrum!

Target
Iterations

release release

Scrum workflow!

Leaning on Lean!
!  Kanban and Lean seemed the only
way...

!  The first Kanban implementation for
iPlayer!

Decision!

!   Eliminate waste
!   Amplify learning
!   Decide as late as possible
!   Deliver as fast as possible
!   Empower the team
!   Build integrity in
!   See the whole

Focussing on the Lean Principles

!  Value stream mapping
– Identified and established sources of waste
– Collaborative
– Utilised Kanban techniques

Principle:
Identify waste

Started simple (we were under stress)

!   Delivery Manager and star
coder!

–  Car crash management + over
functioning!

!   Tester!
–  Resentful and reminding everyone

he’s ‘a perm and on loan’ and
‘no-ones his boss here’!

!   2nd Dev!
–  Bad case of second sibling

syndrome!
–  Underfunctioning!

Immediate effect: understanding

Behaviour! Why?!

•  Dependency hell!
•  Backlog priority changes rapidly!
•  None can step in!

•  Takes 3 days to build to dev!
•  None had shared basic

knowledge of where to test!

•  Didn’t know where to start!!
•  Didn’t know what the others

were doing!

!   Talked about the workflow continuously!

!   Could see when someone was overloaded!
–  Example: We all began helping to test!

!   Could see which blockers needed removal ASAP!
–  Could identify upcoming issues earlier!

!   Came up with solutions / workarounds!
–  Example: Donuts for Ops guys = speedier builds!

!   The backlog became EVERYONES backlog!

Suddenly we had a common mental model

!   Things we could not change
–  Visualised / mitigated

•  Delays waiting for dependencies
•  Delays due to Scrum sprints
•  Management overhead

!   Things we could change
–  Identified and actioned!

•  Be VERY quick to adapt
•  Rapid response to changes
•  Collaborate
•  Learn quickly

Small, continuous improvements: constantly

Primary aim… continuous flow

Dependencies (backlog)
CRITICAL dependencies
Blocker removal focus

Smooth continous
dev and test

workflow

Capacity limits

!  We had to be inventive
– Retrospectives?
– Planning?

But, still limitations

In place of retrospectives …

Waste /
Improvement

Short,
focussed
solution
sessions!

!  Short 15 min chats
– Driven by ‘demand’

•  Exceed waste ticket area capacity on board = action

– What’s wasting our time?
•  Is there a pattern here?

– What can we improve?
•  Are there any improvement suggestions which would

solve a large chunk of the waste tickets?

– What’s most important to us now?
•  Create ticket
•  Add to backlog

Continuous retrospective culture

Planning as we go

Upcoming
workload

5 min
reviews, 3

times a day!

!   Solution
–  Delivery Manager reviews overall focus weekly

•  Picks top 3 devices to work on
•  Ensures dependency column 3 days ahead of dev ticket

–  Team collaboratively reviews focus 3 times a day
•  Adjusts backlog of ‘options’

– What we CAN do till dependency blocks clear?

Continuous planning and prioritisation

!  Communicate / share skills
– Stand up and share, anytime

!  Shortest iteration cycles possible
– Increased feedback cycle
– Continuous review of twitter / blogs

Principle:
Amplify Learning

!   Options based approach to backlog

!   Delay decisions
–  Which device to go out, depends on vendor readiness

•  Working on a number of devices at once
•  Whittles down as live date gets closer
•  Whichever vendor is ready at live date, goes live

!   Prioritise LAST minute
–  Release only fully complete and tested

elements

Principle:
Decide as LATE as possible

!   Quicker delivery = quicker feedback = quicker
response = better product!
–  Increased our learning and communication!

•  No rule book, no specialists, it was up to us to ‘become the experts’!

!   Interestingly, other dependent departments
sometimes saw this as an irritant!

Principle:
Deliver as FAST as possible

!   Project Manager – facilitation role!

!   Delivery Manager – blocker removal and customer /
stakeholder ‘conduit’!
–  Weekly strategy!
–  Result required + ideal timeline!

!   Team!
–  Self organised: Choose what is needed, when you need to!
–  Divide and prioritise against strategy!

Principle:
Empower the team

Results!

!  Only measure: working software
!  Hardly any time for reflection

– Would have been good to have had some
measures but….

Sorry, no charts…

! iPad v2 ‘quick and dirty’ release!
– Notified 4 weeks ahead to deliver iPlayer app!
– Gave us 3 weeks to ‘drop dead’ date: iPad

release in UK!
– Concurrently keep other devices ‘ready to

go’!

!  Hugely positive reception!

Extremely responsive

!   Product named one of the EU top 3 IPTV benchmarks
in IFA 2010!

!   Business Development highly engaged!
–  Product promoted and coverage increased!
–  Now a ‘well known’ division of the BBC!

!   Released 9 Devices in 6 months!
–  No known defects EVER released live!

!   Met and exceeded delivery release schedule!
–  Happy General Manager (uses our products)!

Overall: Results

And we got organised at the same time:
resulting value stream

Etc
…

!   1 year on, the team...!
–  Expanded to over double the size!
–  Became ‘self managing’!
–  Experimented with a variety of different methods !
–  Got very organised!
–  Poured all their v2 learnings into creating a fantastic v3 app using

BDD!
–  Viewed as Leads across the BBC!
–  Regularly shared learnings at conferences and BBC events!
–  Always met (and sometimes exceeded) delivery deadlines whilst

adapting to inevitable change!

And then...

!  Did so well – got taken over!

– Able to handover without politics!
– Assist new team to take app live!

Reflection: Difficulties!

!  Principle: Build integrity in!
–  No test automation / refactoring possible!
–  No time to ‘build integrity’ across all dependent teams in

BBC (small cog, big machine)!
•  Optimised /mitigated as much as we could!

!  Mitigation!
–  Short, multiple releases to live!
–  Earlier awareness of dependencies!
–  Keep all options open as long as possible!
–  Focus on Quality of Delivery!

Difficulties

!  Continuous Irritation!
–  Stress = shut down or push issues away!
–  Changing view to a continuous improvement scenario

is a big shift!

!  Embarrassment and feeling threatened!
–  Exposing issues needs courage and sensitivity and

TIMING!
–  Keeping the blame culture at bay is hard!

!  Facing issues you can’t do much about!
–  Its a difficult attitude shift from helpless to mitigation!

•  You need to learn to work around it and focus on what is
going well!

Difficulties

!   Lean Principle: See the whole!
–  ... In reality... 1 small team in a big pond...!
–  Sometimes, awareness is all you can have!

! Kanban workflow visualisation led to questioning why!
!   Questioning why led to understanding the whole!

!   We couldn’t change it sometimes, but we could work
around it!

!   Seeing the whole helped mitigate against risks!

Systems thinking awareness

Reflection: Overall!

!  Were tools we used to help change our view
– To work with what we had
– Overcome what we could

!  Faced with edgecase-hell and tough times
– Triggered questioning and discussion
– Helped transform from a ‘Can’t Culture’ to a

‘What Can We Do (with what we have) Culture’
– We used it to empower us to create our own

solutions

Kanban/Lean

!  Even without a nice clean, thought out
adoption
–  In chaos we got results

!  This approach
– Focused attention on value

•  Process
•  Business
•  Technology

– Kept us continually improving and experimenting
– Ensured lessons were learned and applied
– Was a foundation for sustainable improvement

Summary

! Kanban is a great tool!
–  BUT…. Use it in context and with intelligence and

sensitivity!

! Kanban creates useful and informative views!
–  BUT…. You might need to mitigate against backlash of

what you find!

! Kanban helped navigate difficult edge-case issues
when things looked impossible....!
–  BUT… you need to be prepared to change your view!!!!

In conclusion

Don’t be afraid!

!  If faced with edgecases… Innovate not

only with technology but also your process

– Just focus on the principles

!  Its up to you, your team

At the end of the day…!

Thank you!

