
OTP
presents

FRANCESCO CESARINI

Francesco Cesarini
Erlang Solutions

@FrancescoC
francesco@erlang-solutions.com
www.erlang-solutions.com

WHAT IS SCALABILITY?

WHAT IS (MASSIVE) CONCURRENCY?

WHAT IS HIGH AVAILABILITY?

WHAT IS FAULT TOLERANCE?

WHAT IS DISTRIBUTION TRANSPARENCY?

YES, PLEASE!!!
Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

TO THE RESCUE

• OPEN SOURCE

• CONCURRENCY-ORIENTED

• LIGHTWEIGHT PROCESSES

• ASYNCHRONOUS MESSAGE PASSING

• SHARE-NOTHING MODEL

• PROCESS LINKING / MONITORING

• SUPERVISION TREES AND RECOVERY STRATEGIES

• TRANSPARENT DISTRIBUTION MODEL

• SOFT-REAL TIME

• LET-IT-FAIL PHILOSOPHY

• HOT-CODE UPGRADES

W
HAT IS ERLANG

WELL, IN FACT YOU NEED MORE.

ERLANG IS JUST
A PROGRAMMING LANGUAGE.

YOU NEED ARCHITECTURE PATTERNS.
YOU NEED MIDDLEWARE.

YOU NEED LIBRARIES.
YOU NEED TOOLS.

YOU NEED OTP.

SOME TEXT

WHAT IS MIDDLEWARE?

MIDDLEW
ARE

DESIGN PATTERNS

FAULT TOLERANCE

DISTRIBUTION

UPGRADES

PACKAGING

WHAT ARE LIBRARIES?

LIBRARIES

STORAGE

O&M
INTERFACES

COMMUNICATION

WHAT TOOLS?

OTP TOOLS

DEVELOPMENT

TEST FRAMEWORKS

RELEASE & DEPLOYMENT

DEBUGGING & MONITORING

PART OF THE ERLANG DISTRIBUTION

OPEN SOURCE

OTP IS

OTP
Servers
Finite State Machines
Event Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid Code
More Tested Code

More Free Time

BEHAVIOURS

SPECIFIC
CALLBACK
MODULE

GENERIC
BEHAVIOUR

MODULE

Behaviour

process

OTP
Servers
Finite State Machines
Event Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid Code
More Tested Code

More Free Time

call(Name, Message) ->
 Name ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

reply(Pid, Reply) ->
 Pid ! {reply, Reply}.

Client Server

{request, Pid, Message}

{reply, Reply}

Client Server

{request, Pid, Message}

{reply, Reply}

Server 2

{reply, Reply}

call(Name, Msg) ->
 Ref = make_ref(),
 Name ! {request, {Ref, self()}, Msg},
 receive {reply, Ref, Reply} -> Reply end.

reply({Ref, Pid}, Reply) ->
 Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

{reply, ???, Reply}

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref, [flush]),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

{reply, Ref, Reply}

{'DOWN', Ref, process, PidB, Reason}

BEHAVIOURS

TIMEOUTS

DEADLOCKS
TRACING

MONITORING

DISTRIBUTION

Your Heading

Let It Fail
convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7;
 Other ->
 {error, unknown_day}
 end.

Let It Fail
convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7

 end.

ISOLATE THE ERROR!

Trap Exit
TRAPPING AN EXIT SIGNAL

PidA

{'EXIT', PidA, Reason}

PidC

PidB

Supervisors

PidA

PidC

PidBSupervisor

Workers

Application

Releases
Release

Mongoose

IM folsom lager

snmp mnesia stdlib

SASL kernel ERTS

CONCLUSIONS

USE ERLANG

Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

USE ERLANG/OTP

Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

@ fr a n ce s co C

QUESTIONS?

