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We all know fold



foldl1 (+) [1..5]



foldl1 (+) [1..5]
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We all know Average



data Pair = Pair !Int 'Double

average . Vector Double -> Double
average xs = s / fromintegral n
where
Pairns = foldl' k (Pair 0 0) xs
K (Pair n s) x = Pair (n+1) (s+x)
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Standard ways of reducing
information



(average [1, 1,1, 1, 1, 1]) == (average [11, -9, 12, -10])



It turns out that we do this all the time
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Quantitative Bias

In every use of units, there’s an assumption
of uniformity



Quantitative Bias

In every use of units, there’s an assumption
of uniformity

1 can be exchanged for 1



“We want to establish key metrics and
indicators to measure our progress toward
the goal.”
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But..






We don’t have (m)any uniform
distributions in software
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Abstract

A software component graph, where a node represents a
component and an edge represents a use-relation between
components, is widely used for analysis methods of soft-
ware engineering. It is said that a graph is characterized
by its degree distribution. In this paper, we investigate soft-
ware component graphs composed of Java classes, to seek
whether the degree distribution follows so-called the power-
law, which is a fundamental characteristic of various kinds
of graphs in different fields. We found that the in-degree
distribution follows the power-law and the out-degree dis-
tribution does not follow the power-law. In a software com-
ponent graph with about 180 thousand components, just
a few of the components have more than ten thousand in-
degrees while most of the components have only one or zero
in-degree.

behavior of software. We may obtain the static characteris-
tics of the software such as design structure by analyzing the
impact relation of the software statically. We would obtain
the dynamic characteristics of the software such as collab-
orations among objects by analyzing the object invocation
dynamically.

In this paper, we investigate component graphs con-
structed by static analysis, which are widely used in various
software engineering methods such as software component
retrieval [12, 19], software measurement [16, 27], design
recovery [11, 25, 28], and software modularization [20]. It
is important to know the characteristic of component graphs
for effective and efficient analysis; however, there are little
researches on their characteristic.

We focus on whether the degree distribution of a compo-
nent graph follows so-called power-law, intuitively meaning
that very few nodes have extremely high degrees and most






Distortion via Metrics




There is no “right” number for method size,
class size, amount of complexity, etc



Why do we persist in our reductionism?



Maybe it is because we can’t think of
anything better



“We want to establish key metrics and
indicators to measure our progress toward
the goal.”

v, V%







“Laws” of Metrics
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“Laws” of Metrics

|. Distance Causes Misunderstanding
2. Highlighting Leads to Focus

3. Focus Leads to Action

4. Focus Leads to Side-Effects



Death of Locality




Practice

Use Qualitative “Measures’” when
Possible






Practice

Silent Alarms



Silent Alarms

Don’t have check-in gates. Let people make mistakes.
Investigate the mistakes off-line and see why they
happened. Then, intervene



Practice

Disposable Metrics



Disposable Metrics

Secondary effects are less likely when metrics come
and go. Use them to highlight concerns



Practice

Targeted Metrics



Targeted Metric - Feature Trend Cards

Hypothesize a couple of features that you will never
add to your code. Task them and estimate them
periodically. See the debt trend for areas they touch.



Practice

Deluge with Metrics



Deluge

The more metrics you have, the harder it is to take
any one of them too seriously. They become “vital
signs” and indicators as we have in medicine.



Temporal Correlation of Class Changes

events.group by {|e| [e.day,e.committer]}.values
.map {|e| e.map(&:class name).uniqg.combination(2).to_a }
.flatten(1l).norm pairs.freq by {|e| e }.sort by {|p| p[1] }

When you examine these sorts of frequencies, they typically have that power law-ish shape:
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Vital Signs




Reduction is the Enemy



