The Metrics Trap

Michael Feathers

We all know fold

foldl1 (+) [1..5]

foldl1 (+) [1..5]
15

We all know Average

data Pair = Pair !Int 'Double

average . Vector Double -> Double
average xs = s / fromintegral n
where
Pairns = foldl' k (Pair 0 0) xs
K (Pair n s) x = Pair (n+1) (s+x)

data Pair = Pair !Int 'Double

average . Vector Double -> Double
average xs = s/ fromintegral n
where
Pairns = foldl' k (Pair 0 0) xs
K (Pair n s) x = Pair (n+1) (s+x)

Standard ways of reducing
information

(average [1, 1,1, 1, 1, 1]) == (average [11, -9, 12, -10])

It turns out that we do this all the time

Time of Day (EST)

|

6%
5.5%

5%
4.5%

4%
3.5%

3%
2.5%

2%
1.5%

1%
5%
0%

Wd LL
Wd 0L
Wd 6
Wd 8
Wd £
Wd 9
Wd S
Wd ¥
Wd €
Wd
Wd L
Wd ZL
WV LL
WY 0L
WV 6
WV 8
WV £
WV 9
WV §

WY ¥

WV €

B
.<<<_.

WV ZL

B ReTweets

@ Random Tweets

Quantitative Bias

In every use of units, there’s an assumption
of uniformity

Quantitative Bias

In every use of units, there’s an assumption
of uniformity

1 can be exchanged for 1

“We want to establish key metrics and
indicators to measure our progress toward
the goal.”

“We want to establish key metrics and
indicators to measure our progress toward
the goal.”

v, V%

But..

We don’t have (m)any uniform
distributions in software

An Exploration of Power-law in Use-relation of Java Software Systems

Makoto Ichiif

Makoto Matsushita’

Katsuro Inoue’

'Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {m-itii, matusita, inoue}@ist.osaka-u.ac.jp

Abstract

A software component graph, where a node represents a
component and an edge represents a use-relation between
components, is widely used for analysis methods of soft-
ware engineering. It is said that a graph is characterized
by its degree distribution. In this paper, we investigate soft-
ware component graphs composed of Java classes, to seek
whether the degree distribution follows so-called the power-
law, which is a fundamental characteristic of various kinds
of graphs in different fields. We found that the in-degree
distribution follows the power-law and the out-degree dis-
tribution does not follow the power-law. In a software com-
ponent graph with about 180 thousand components, just
a few of the components have more than ten thousand in-
degrees while most of the components have only one or zero
in-degree.

behavior of software. We may obtain the static characteris-
tics of the software such as design structure by analyzing the
impact relation of the software statically. We would obtain
the dynamic characteristics of the software such as collab-
orations among objects by analyzing the object invocation
dynamically.

In this paper, we investigate component graphs con-
structed by static analysis, which are widely used in various
software engineering methods such as software component
retrieval [12, 19], software measurement [16, 27], design
recovery [11, 25, 28], and software modularization [20]. It
is important to know the characteristic of component graphs
for effective and efficient analysis; however, there are little
researches on their characteristic.

We focus on whether the degree distribution of a compo-
nent graph follows so-called power-law, intuitively meaning
that very few nodes have extremely high degrees and most

Distortion via Metrics

There is no “right” number for method size,
class size, amount of complexity, etc

Why do we persist in our reductionism?

Maybe it is because we can’t think of
anything better

“We want to establish key metrics and
indicators to measure our progress toward
the goal.”

v, V%

“Laws” of Metrics

“Laws” of Metrics

|. Distance Causes Misunderstanding

“Laws” of Metrics

|. Distance Causes Misunderstanding
2. Highlighting Leads to Focus

“Laws” of Metrics

|. Distance Causes Misunderstanding
2. Highlighting Leads to Focus
3. Focus Leads to Action

“Laws” of Metrics

|. Distance Causes Misunderstanding
2. Highlighting Leads to Focus

3. Focus Leads to Action

4. Focus Leads to Side-Effects

Death of Locality

Practice

Use Qualitative “Measures’” when
Possible

Practice

Silent Alarms

Silent Alarms

Don’t have check-in gates. Let people make mistakes.
Investigate the mistakes off-line and see why they
happened. Then, intervene

Practice

Disposable Metrics

Disposable Metrics

Secondary effects are less likely when metrics come
and go. Use them to highlight concerns

Practice

Targeted Metrics

Targeted Metric - Feature Trend Cards

Hypothesize a couple of features that you will never
add to your code. Task them and estimate them
periodically. See the debt trend for areas they touch.

Practice

Deluge with Metrics

Deluge

The more metrics you have, the harder it is to take
any one of them too seriously. They become “vital
signs” and indicators as we have in medicine.

Temporal Correlation of Class Changes

events.group by {|e| [e.day,e.committer]}.values
.map {|e| e.map(&:class name).uniqg.combination(2).to_a }
.flatten(1l).norm pairs.freq by {|e| e }.sort by {|p| p[1] }

When you examine these sorts of frequencies, they typically have that power law-ish shape:

375

250

125

— deleted

Active Set of Classes

1500
1125
“c(1¢1¢¢¢¢¢(¢¢¢ccco
LB
Classes
750
375

Time (months)

Classes

Active Set of Classes

5000
3750
2500
1250
c“.
|
““
0 CEEEESLS

Time (months)

Classes

Active Set of Classes

5000
3750
2500
1250
c“.
|
““
0 CEEEESLS

Time (months)

Vital Signs

Reduction is the Enemy

