
Design Patterns for
Mobile Apps

MAGICALPANDA

@saulmora

@casademora

Wednesday, June 19, 13

Cocoa Design Patterns

Wednesday, June 19, 13

Wednesday, June 19, 13

NSBrief

Wednesday, June 19, 13

A long time ago, in a career
far, far away…

Wednesday, June 19, 13

I want to tell you a short story about a young developer

Wednesday, June 19, 13

When I was a young padawan developer

Wednesday, June 19, 13

I had a job at the empire….

Wednesday, June 19, 13

Wednesday, June 19, 13

A neckbeard programmer gave me a book

Wednesday, June 19, 13

What are Design Patterns?
Time-tested reusable software architecture components. Many problems in software
engineering occur time and again. If you’ve only gotten started in software development
during the mobile application wave, then you may have only now started to notice patterns in
your code, but haven’t been able to pin point why things are familiar.

http://www.developer.com/design/article.php/1474561/What-Are-Design-Patterns-and-
Do-I-Need-Them.htm

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/
0201633612/ref=sr_1_1?ie=UTF8&qid=1363000537&sr=8-1&keywords=design+patterns

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Fractals, numbers and other patterns occur in nature. Our human brains have evolved to
notice patterns. Patterns were first documented in building architecture. The idea was picked
up by software engineers and then applied to software architecture.

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

More recently, on my journey/quest to become a better/master developer, I’ve been delving
into books even older than the Design Patterns book. I’ve been reading SmallTalk Best
Practices by Kent Beck.

I picked up this book to learn what previous masters knew. I found that over the course of my
programming career, I had already encountered at least half of the code patterns in this
book. I still had many to learn. But it made me realize that there is so much knowledge from
previous generations of developers that, while not lost, is not implemented nearly enough in
modern applications.

Wednesday, June 19, 13

And so I’m here today to share with you how patterns fit in this modern world of mobile
apps.

+

Wednesday, June 19, 13

Let’s Build a
Mobile App

Wednesday, June 19, 13

The best way to explain these patterns, and when and where to use them in your apps is to
build a mobile app of our own here.

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

View

Controller

Model

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

Wednesday, June 19, 13

Requirements
- Plugs into app.net
- Displays a list of posts
- Saves the tweets so relaunches are fast
- Can add new service API urls fast
- Doesn’t crash

MVC

Wednesday, June 19, 13

Let’s start with the mother of all patterns, MVC

Model View Controller

Wednesday, June 19, 13

Model View Controller

Wednesday, June 19, 13

What goes in the model?

Wednesday, June 19, 13

@interface Post : _Post

+ (id) postWithId:(NSNumber *)postId;

- (void) downloadAttachments;

@end

Wednesday, June 19, 13

Model View Controller

Wednesday, June 19, 13

What goes in a view?

Wednesday, June 19, 13

Model View Controller

Wednesday, June 19, 13

What goes in a Controller?

?

Wednesday, June 19, 13

MVC

Wednesday, June 19, 13

Massive View Controller

MVC

Wednesday, June 19, 13

Massive View Controller

View

ViewController

Model

View

ViewController

View

ViewController

Wednesday, June 19, 13

On iOS and Mac, the concept of ViewControllers are a tad different

View

ViewController

Model

View

ViewController

View

ViewController

Wednesday, June 19, 13

Ideally, your viewControllers should be able to display the same model information in
multiple ways.

View

ViewController

Model

Wednesday, June 19, 13

How do they all work together?

MVC can be composed of
MVC (UITextView for
example)

Database

Visual Control

Network

App.net

View

ViewController

Model

Wednesday, June 19, 13

Q: What goes in a viewcontroller?
A: All the things needed to present data into the view

Rule of Thumb: If it involves networking code, database code, drawing code, algorithms, it
probably doesn’t go in here.

The view controller should connect pieces, but not contain the logic for all those things...like
a network stack, or a database...

DatabaseVisual Control

Network App.net

ViewController

Wednesday, June 19, 13

Q: What goes in a viewcontroller?
A: All the things needed to present data into the view

Rule of Thumb: If it involves networking code, database code, drawing code, algorithms, it
probably doesn’t go in here.

The view controller should connect pieces, but not contain the logic for all those things...like
a network stack, or a database...

Wednesday, June 19, 13

Let’s get back to talking about our new mobile app

AppDelegate

Wednesday, June 19, 13

Data Flow Pattern
How does data flow in our app?

When you first start building an iOS App, you start with an AppDelegate

AppDelegate

RootViewController

Wednesday, June 19, 13

Data Flow Pattern
Then you add a root view controller because you can’t do anything in iOS without at least one
view controller. This is added to the default window. Things are simple here

AppDelegate

RootViewController

Wednesday, June 19, 13

Data Flow Pattern
Then you add a root view controller because you can’t do anything in iOS without at least one
view controller. This is added to the default window. Things are simple here

AppDelegate

RootViewController

ViewController

Wednesday, June 19, 13

But then, you realize you need to add more viewcontrollers to the app

AppDelegate

RootViewController

ViewController

ViewController

Wednesday, June 19, 13

And more viewControllers...

AppDelegate

RootViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

Wednesday, June 19, 13

Until you get something like this, a hierarchy of view controllers.
Now, let me ask you, were does the networking component of this app go?

AppDelegate

RootViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController
ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewControllerViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController
ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController
ViewController

ViewController

ViewController

ViewController

ViewController

ViewController
ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController

ViewController
ViewController

ViewController

ViewController

ViewController

ViewController

Wednesday, June 19, 13

Until you get something like this, a hierarchy of view controllers.
Now, let me ask you, were does the networking component of this app go?

AppDelegate

RootViewController

ViewController

ViewController

ViewController

ViewController

Wednesday, June 19, 13

Until you get something like this, a hierarchy of view controllers.
Now, were does the networking component of this app go?

AppDelegate

RootViewController

ViewController

ViewController

ViewController

ViewController

App.net

Wednesday, June 19, 13

I propose that the app.net service attaches as a property on your app delegate for a couple
reasons:
- the service is core to your app’s functionality, put it at the core of your system
- the app delegate lives for the life of your app, so you can be assured this service is around
and you have control over its lifecycle

 You all probably do this already...I don’t think it’s wrong in principal after working with so
many app architectures over the years. But I bet you all write the following line of code...

(MyAppDelegate *)[[UIApplication
sharedApplication] delegate]

Wednesday, June 19, 13

But I’ve already seen this before!

#define sharedDelegate \
(MyAppDelegate *)[[UIApplication sharedApplication] delegate]

Wednesday, June 19, 13

And then some of you do this! PLEASE STOP DOING THIS!

AppDelegate

RootViewController

ViewController

ViewController

ViewController

ViewController

App.net

message

Wednesday, June 19, 13

I propose that the app.net service attaches as a property on your app delegate for a couple
reasons:
- the service is core to your app’s functionality, put it at the core of your system

 You all probably do this already...I don’t think it’s wrong in principal after working with so
many app architectures over the years. But I bet you all write the following line of code...

Chain of Responsibility

Pause here more, explain
more :

What
When to use
Why

Wednesday, June 19, 13

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

Some properties of the chain of responsibility

Responder Chain

Wednesday, June 19, 13

In Cocoa, we have the responder chain

[[UIApplication
sharedApplication]
sendAction:to:from:forEvent:]

Wednesday, June 19, 13

Now, this may look like “more code” but it is so much more powerful and flexible. This code
uses the application singleton, which knows about the view hierarchy since that’s how events
are sent to your viewcontrollers, to send your action up the chain.

@implementation UIView
(FindAndResignFirstResponder)

- (BOOL)findAndResignFirstResponder
{
 if ([self isFirstResponder]) {
 [self resignFirstResponder];
 return YES;
 }
 for (UIView *subView in [self subviews]) {
 if ([subView findAndResignFirstResponder])
 return YES;
 }
 return NO;
}
@end

Wednesday, June 19, 13

http://stackoverflow.com/questions/1823317/get-the-current-first-responder-without-
using-a-private-api

No doubt, many of you have helper methods like this.

[[UIApplication sharedApplication]
 sendAction:@selector(resignFirstResponder)
 to:nil
 from:self
forEvent:nil]

Wednesday, June 19, 13

Also note the from: parameter here. ‘self’ is the object in the responder chain. This parameter
(from:) cannot be for this to work. The responder chain is a way to respond to events. If no
one sent the action, what is there to respond to?

- (void)viewDidAppear:

Wednesday, June 19, 13

This technique, because it’s part of the Cocoa view hierarchy, can only work when your view
controller is attached to the hierarchy. The best time is on viewDidAppear in your view
controllers.

AppDelegate

RVC

VC

View

Wednesday, June 19, 13

AppDelegate

RVC

VC

View

VC

View

Wednesday, June 19, 13

AppDelegate

RVC

VC

View

VC

View

Wednesday, June 19, 13

Command

Wednesday, June 19, 13

Commands and network service patterns

Wednesday, June 19, 13

Network Commands

- (void)viewDidLoad {
 [super viewDidLoad];

 // Setting Up Table View
 self.tableView = [[UITableView alloc] initWithFrame:CGRectMake(0.0, 0.0, self.view.bounds.size.width,
self.view.bounds.size.height) style:UITableViewStylePlain];
 self.tableView.dataSource = self;
 self.tableView.delegate = self;
 self.tableView.autoresizingMask = UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight;
 self.tableView.hidden = YES;
 [self.view addSubview:self.tableView];

 // Setting Up Activity Indicator View
 self.activityIndicatorView = [[UIActivityIndicatorView alloc]
initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleGray];
 self.activityIndicatorView.hidesWhenStopped = YES;
 self.activityIndicatorView.center = self.view.center;
 [self.view addSubview:self.activityIndicatorView];
 [self.activityIndicatorView startAnimating];

 // Initializing Data Source
 self.movies = [[NSArray alloc] init];

 NSURL *url = [[NSURL alloc] initWithString:@"http://itunes.apple.com/search?term=harry&country=us&entity=movie"];
 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url];

 AFJSONRequestOperation *operation = [AFJSONRequestOperation JSONRequestOperationWithRequest:request
success:^(NSURLRequest *request, NSHTTPURLResponse *response, id JSON) {
 self.movies = [JSON objectForKey:@"results"];
 [self.activityIndicatorView stopAnimating];
 [self.tableView setHidden:NO];
 [self.tableView reloadData];

 } failure:^(NSURLRequest *request, NSHTTPURLResponse *response, NSError *error, id JSON) {
 NSLog(@"Request Failed with Error: %@, %@", error, error.userInfo);
 }];

 [operation start];
}

Wednesday, June 19, 13

Zoom and enhance

 // Initializing Data Source
 self.movies = [[NSArray alloc] init];

 NSURL *url = [[NSURL alloc] initWithString:@"http://itunes.apple.com/search?
term=harry&country=us&entity=movie"];
 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url];

 AFJSONRequestOperation *operation = [AFJSONRequestOperation
JSONRequestOperationWithRequest:request success:^(NSURLRequest *request,
NSHTTPURLResponse *response, id JSON) {
 self.movies = [JSON objectForKey:@"results"];
 [self.activityIndicatorView stopAnimating];
 [self.tableView setHidden:NO];
 [self.tableView reloadData];

 } failure:^(NSURLRequest *request, NSHTTPURLResponse *response, NSError
*error, id JSON) {
 NSLog(@"Request Failed with Error: %@, %@", error, error.userInfo);
 }];

 [operation start];

Wednesday, June 19, 13

Zoom and enhance

^(NSURLRequest *request, NSHTTPURLResponse *response, id JSON) {
 self.movies = [JSON objectForKey:@"results"];
 [self.activityIndicatorView stopAnimating];
 [self.tableView setHidden:NO];
 [self.tableView reloadData];
 }

Wednesday, June 19, 13

This return block has elements from all three areas combined
Self.movies lives in the view controller
And the block is a result of a network stack

ADN Service

Wednesday, June 19, 13

ADN Service

https://alpha-api.app.net/stream/0/posts/stream

Wednesday, June 19, 13

ADN Service

https://alpha-api.app.net/stream/0/posts/stream

POST:
include_reposters=1&include_annotations=1&incl
ude_muted=0&include_starred_by=1

Wednesday, June 19, 13

ADN Service

Get Personal Stream

Wednesday, June 19, 13

ADN Service

Get Personal Stream

include_reposters

include_muted

include_annotations

include_starred_by

Wednesday, June 19, 13

ADN Service

Get Personal Stream

@property (nonatomic, assign) BOOL includeReposters

@property (nonatomic, assign) BOOL includeAnnotations

@property (nonatomic, assign) BOOL includeStarredBy

@property (nonatomic, assign) BOOL includeMuted

Wednesday, June 19, 13

ADN Service

@class ADNRetrievePersonalStreamCommand : ADNCommand

@property (nonatomic, assign) BOOL includeReposters

@property (nonatomic, assign) BOOL includeAnnotations

@property (nonatomic, assign) BOOL includeStarredBy

@property (nonatomic, assign) BOOL includeMuted

Wednesday, June 19, 13

ADN Service

@class ADNRetrievePersonalStreamCommand : ADNCommand

@property (nonatomic, assign) BOOL includeReposters

@property (nonatomic, assign) BOOL includeAnnotations

@property (nonatomic, assign) BOOL includeStarredBy

@property (nonatomic, assign) BOOL includeMuted

@property (nonatomic, copy) NSURL *baseURL;

@class ADNService : UIResponder

Wednesday, June 19, 13

Get Personal Stream

ADN Service

Wednesday, June 19, 13

Command

Wednesday, June 19, 13

ADNCommand

Wednesday, June 19, 13

ADNPersonalStreamCommand

ADNCommand

Wednesday, June 19, 13

ADNPersonalStreamCommand

ADNCommand

Wednesday, June 19, 13

ADNPersonalStreamCommand

ADNPostStatusCommand

ADNRetrieveChannelCommand

ADNUserLookupCommand

ADNCommand

Wednesday, June 19, 13

Template

Wednesday, June 19, 13

Wednesday, June 19, 13

//AppDelegate.h
@interface AppDelegate : UIResponder<UIApplicationDelegate>

@property (nonatomic, strong, readwrite) IBOutlet UIWindow *window;
@property (nonatomic, strong, readonly) WebService *webService;

@end

//AppDelegate.m
- (UIResponder *)nextResponder;
{
 return self.webService;
}

Wednesday, June 19, 13

@interface WebService : UIResponder

@property (nonatomic, copy, readonly) NSURL *baseURL;
@property (nonatomic, strong, readonly) TokenStorage *tokenStorage;
//..more properties

- (id) initWithBaseURL:(NSURL *)baseURL;
- (void) sendCommand:(WebServiceCommand *)command;

- (void) presentMessageFromCommand:(NSString *)message;
- (BOOL) isAuthenticated;

- (BOOL) performAction:(SEL)action from:(id)sender;
- (BOOL) performAction:(SEL)action from:(id)sender parameters:
(NSDictionary *)parameters;

+ (BOOL) isNetworkReachable;

@end

Wednesday, June 19, 13

@interface WebService (Commands)

- (IBAction) loginToService;
- (IBAction) logoutFromService;

- (IBAction) retrieveUsersPersonalStream:(id)sender;

@end

Wednesday, June 19, 13

The Web Service Commands category

- (void) loginToService
{
 WebServiceLoginCommand *command = [WebServiceLoginCommand
commandWithService:self];
 command.tokenStorage = self.tokenStorage;
 command.username = [self.delegate username];
 command.password = [self.delegate password];
 [command send];
}

Wednesday, June 19, 13

In the Web Service category

- (NSString *)username;
{
 return [self textValueForCellAtIndexPath:[NSIndexPath
indexPathForRow:0 inSection:0]];
}

- (NSString *)password;
{
 return [[self textValueForCellAtIndexPath:[NSIndexPath
indexPathForRow:1 inSection:0]] lowercaseString];
}

- (IBAction) login:(id)sender;
{
 if ([[self username] length] && [[self password] length])
 {
 self.messageLabel.text = @"";
 [[UIApplication sharedApplication]
performActionInResponderChain:@selector(resignFirstResponder)
from:self];
 [SVProgressHUD showWithStatus:@"Logging in..."
maskType:SVProgressHUDMaskTypeBlack];
 }
}

Wednesday, June 19, 13

In the Login View

- (void) sendCommand:(WebServiceCommand *)command;
{
 BOOL commandVerified = [self verifyCommand:command];
 if (!commandVerified) return;

 if ([self.httpClient networkReachabilityStatus] ==
AFNetworkReachabilityStatusNotReachable)
 {
 [self.delegate displayMessage:@"No Internet Connection"];
 DDLogInfo(@"Not connected to a network");
 }
 else
 {
 AFHTTPRequestOperation *operation = [command createRequestOperation];

 [self.httpClient enqueueHTTPRequestOperation:operation];

 DDLogInfo(@"Sent Command: %@", command);
 }
}

Wednesday, June 19, 13

In the Web Service sendCommand method

Lets take a look at the two statements afterwards

[self.delegate displayMessage:@"No Internet Connection"];
DDLogInfo(@"Not connected to a network");

Wednesday, June 19, 13

AFHTTPRequestOperation *operation = [command
createRequestOperation];

[self.httpClient enqueueHTTPRequestOperation:operation];

DDLogInfo(@"Sent Command: %@", command);

Wednesday, June 19, 13

Command
Object

WebService Object

Our App HTTP Request Actual
Service

Wednesday, June 19, 13

HTTP
Response

WebService Object

Usable ObjectOur App Actual
Service

Wednesday, June 19, 13

Usable Object

Needs to be more clear

Wednesday, June 19, 13

Now that we have a UI, and network support, we need to store and display that data.
The AppDelegate also has a reference to the data store, but it’s merely another responder in
the chain, and is also an injected dependency into the webservice

Needs to be more clear

Usable Object

Wednesday, June 19, 13

Now that we have a UI, and network support, we need to store and display that data.
The AppDelegate also has a reference to the data store, but it’s merely another responder in
the chain, and is also an injected dependency into the webservice

Wednesday, June 19, 13

Now that we have a UI, and network support, we need to store and display that data.

NSFetchedResultsController

Wednesday, June 19, 13

- (void) loadUserStream;
{
 self.results = [StreamEvent MR_fetchAllSortedBy:StreamEvent.createdDate
 ascending:YES
 withPredicate:[self streamFilter]
 groupBy:nil
 delegate:self
 inContext:self.context];
}

Wednesday, June 19, 13

NSFetchedResultsControllerDelegate

Wednesday, June 19, 13

Delegation

Wednesday, June 19, 13

Delegate pattern is like the template pattern, but with instances rather than classes

https://developer.apple.com/library/mac/#documentation/General/Conceptual/DevPedia-
CocoaCore/Delegation.html

This tells the view controller what to do, but now what about the view?

AbstractTemplate

ConcreteTemplate

Wednesday, June 19, 13

Delegation is like the template method, you still fill in the blanks

AbstractTemplate ConcreteTemplate

Wednesday, June 19, 13

But when you delegate, your delegate object does not necessarily subclass from your
template. I like to think of a delegate object as a side-by-side template, or peer object
template. You have to manually implement some things you’d normally get for free in the
object oriented way of subclassing, such as checking if your delegate implements a method
beforehand. But this is great for frameworks, so you don’t have to carry all the baggage that
comes along with subclassing.

- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)theIndexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath

- (void)controllerWillChangeContent:(NSFetchedResultsController
*)controller

- (void)controllerDidChangeContent:(NSFetchedResultsController
*)controller

Wednesday, June 19, 13

 switch(type)
 {
 case NSFetchedResultsChangeInsert:
 [tableView insertRowsAtIndexPaths:@[theIndexPath]
withRowAnimation:UITableViewRowAnimationNone];
 break;

 case NSFetchedResultsChangeDelete:
 [self verifyProductPredicate:anObject];
 [tableView deleteRowsAtIndexPaths:@[theIndexPath]
withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeUpdate:
 {
 id object = [self.results objectAtIndexPath:theIndexPath];
 [self configureCell:(id)[tableView
cellForRowAtIndexPath:theIndexPath] forObject:object];
 }
 break;

 case NSFetchedResultsChangeMove:
 [tableView deleteRowsAtIndexPaths:@[theIndexPath]
withRowAnimation:UITableViewRowAnimationFade];
 [tableView insertRowsAtIndexPaths:@[theIndexPath]
withRowAnimation:UITableViewRowAnimationFade];
 break;
 }

Wednesday, June 19, 13

Observer

Last steps from
controller to view with
observer pattern

Wednesday, June 19, 13

The observer pattern is built into Objective C these days. In our example here, NSFRC is what
handles the observation for us.

Model

Controller

View

Wednesday, June 19, 13

We can now take a fresh look at what model-view-controller means after building an app that
has taken advantage of patterns.

Composite

Command

Mediator

Strategy

Observer

Wednesday, June 19, 13

MVC is actually composed of quite a few other patterns you might recognize:

Touch Interface

View

ViewController

App.net App.net

AppDelegate CoreData

Wednesday, June 19, 13

Touch Interface

View

ViewController

App.net App.net

AppDelegate CoreData

Wednesday, June 19, 13

Touch Interface

View

ViewController

App.net App.net

AppDelegate CoreData

Wednesday, June 19, 13

Touch Interface

View

ViewController

App.net App.net

AppDelegate CoreData

Wednesday, June 19, 13

Pattern Abuse

Wednesday, June 19, 13

There are patterns that are examples of good practices, then there are antipatterns: patterns
of solutions that you should not be using

Factory

Wednesday, June 19, 13

The factory pattern, over time, leads to a giant logic bottleneck of creation code.

Abstract Factories

Wednesday, June 19, 13

Eventually, we end up with factories that make miniature models of factories.
This is because the allocation and initialization of objects are fused together on other
languages with the ‘new’ keyword.

Two-Stage Creation

Wednesday, June 19, 13

The original design of Objective C introduced the idea of two stage object creation. First, we
alloc the memory, then we call the init method.

[[MyClass alloc] init]

Wednesday, June 19, 13

This lets us eliminate the factory pattern in most cocoa code by calling the correct setup code
for a particular instance. Then to create the correct type, we use...

NSClassFromString

Wednesday, June 19, 13

In Cocoa, we can use NSClassFromString to achieve a result largely eliminating the factory
pattern.

[NSClassFromString(@”MyClass”) alloc] init]

Wednesday, June 19, 13

The Designated initializer helps ensure the correct initialization occurs
http://developer.apple.com/library/ios/#documentation/general/conceptual/DevPedia-
CocoaCore/MultipleInitializers.html

Singletons

More explanation in
slides

Wednesday, June 19, 13

Singletons are the most well known, and worst used pattern. Don’t use them unless you have
a REALLY good reason.

- Singletons are a single instance of an object, which has consequences:
-- A global state
-- Not always thread-safe
-- No way to control object lifecycle
-- Tight coupling of your code
-- Doesn’t always accurately reflect system model (there can be more than one instance)

However, if you ARE going to use them (despite my sound advice), here is the best way to do
so, without shooting yourself in the foot:
-- Use them in your classes as if they were instances of objects
-- Inject a singleton as a parameter
-- remember to make sure the variable name has a meaning beyond the fact that it’s a
singleton

Wednesday, June 19, 13

Singletons are just fancy global variables.

Wednesday, June 19, 13

Global variables mean an application wide shared state, which is easy to corrupt across
threads.

Singleton

ViewController AppDelegate

Wednesday, June 19, 13

Your app starts off easy enough using a singleton in the right places

Singleton

ViewController

AppDelegate

Model ObjectNetwork

Web Service

Wednesday, June 19, 13

But then you need it in other places

Singleton

ViewController

AppDelegate

Model ObjectNetwork

Web ServiceWeb ServiceWeb Service

ViewControllerViewControllerViewControllerViewControllerViewController

Model ObjectModel ObjectModel ObjectModel ObjectModel ObjectModel Object

Wednesday, June 19, 13

Then you end up with Tight coupling, singletons referenced and used everywhere.

Singleton

Wednesday, June 19, 13

Singletons can be around for the lifetime of your app. This is not always ideal as it can eat
away resources.

Singleton

Wednesday, June 19, 13

AppDelegate

Wednesday, June 19, 13

Singleton Lifecycle Manager...is also a singleton...sort of

Singleton Manager

AppDelegate

Wednesday, June 19, 13

Singleton Lifecycle Manager...is also a singleton...sort of

Singleton Manager

AppDelegate

Singleton

Singleton

Singleton

Wednesday, June 19, 13

Singleton Lifecycle Manager...is also a singleton...sort of

Singleton ManagerAppDelegate

-instanceForClass:[Singleton class]

Wednesday, June 19, 13

Singleton Lifecycle Manager...is also a singleton...sort of

Singleton ManagerAppDelegate

-destroyInstanceForClass:[Singleton class]

Wednesday, June 19, 13

Singleton Lifecycle Manager...is also a singleton...sort of

SingletonSingleton ManagerAppDelegate

ViewController

Wednesday, June 19, 13

And when you want to use a singleton, you want to inject it into your class

Singleton

Singleton ManagerAppDelegate

ViewController

Wednesday, June 19, 13

And when you want to use a singleton, you want to inject it into your class

ServiceLocator

Wednesday, June 19, 13

Classes are objects too...

Wednesday, June 19, 13

Which means they are singletons

@property Class dateCreator;

Wednesday, June 19, 13

[self.dateCreator date];

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

Wednesday, June 19, 13

The dirty little secret about this talk: These patterns aren’t mobile specific, they apply to any
well built application. But, these patterns are the one’s I’ve found most common in the apps
I’ve see, and the code I’ve written, as such, they qualify as patterns for mobile apps. (Trying
to reframe design patterns into a modern world of mobile computing)

Think about when the Design Patterns book was written. A time when 486 was the top of the
line processor and memory maxed out on your machine at 4 MB. Megabytes! Your iPhone has
a 1GHz processor and at least 256 MB of RAM. The constraints were there, and these patterns
worked. These will work well on mobile applications.

Wednesday, June 19, 13

Another note about patterns is that these are not always going to be implemented as a
generic, reusable library or framework. Some languages, like C++, Java and C+ support
concepts like Templates and Generics that may facilitate the implementation or use of these
patterns.

Wednesday, June 19, 13

Since the original GoF book was written, many new books delving into other areas of patterns
have emerged.

What’s old is new again

Wednesday, June 19, 13

These patterns existed long ago, in a time of fairly limited system resources. Many of these
limitations parallel those of mobile devices over the past 5 years.

Wednesday, June 19, 13

(The terracota warriors, one of the great discoveries of the past)
There are still many patterns to be discovered that are mobile specific
Patterns related to:
- Managing battery power
- Network radio management
- concurrency

Wednesday, June 19, 13

Battery Power
- More laptops can be considered mobile devices these days, and algorithms that consume
less power will be more important over time.

Wednesday, June 19, 13

Radio power/transmission consolidation

Wednesday, June 19, 13

Concurrency Patterns

Wednesday, June 19, 13

Auto Purging Cache
- Dictionary, key/value store
- Keeps track of cached items/cost of each item based on heuristic
- When memory is low, cache is auto-purged

NSCache

Wednesday, June 19, 13

On iOS and Mac, this pattern, like many discussed today, is already part of the Cocoa
framework.

-[cache setTotalCostLimit:]
-[cache setValue:forKey:cost:]

Wednesday, June 19, 13

Wednesday, June 19, 13

Reachability
- One such pattern is to reconfigure your network/communication stack to behave differently
based on different network service levels. Reconfigure your app to respond to the changes in
network, on disconnection or in low bandwidth scenarios. Use a strategy pattern for the
different network configurations, and the observer pattern to watch for the changes.

Wednesday, June 19, 13

Reachability
- One such pattern is to reconfigure your network/communication stack to behave differently
based on different network service levels. Reconfigure your app to respond to the changes in
network, on disconnection or in low bandwidth scenarios. Use a strategy pattern for the
different network configurations, and the observer pattern to watch for the changes.

Wednesday, June 19, 13

Reachability
- One such pattern is to reconfigure your network/communication stack to behave differently
based on different network service levels. Reconfigure your app to respond to the changes in
network, on disconnection or in low bandwidth scenarios. Use a strategy pattern for the
different network configurations, and the observer pattern to watch for the changes.

Wednesday, June 19, 13

Reachability
- One such pattern is to reconfigure your network/communication stack to behave differently
based on different network service levels. Reconfigure your app to respond to the changes in
network, on disconnection or in low bandwidth scenarios. Use a strategy pattern for the
different network configurations, and the observer pattern to watch for the changes.

Strategy

Wednesday, June 19, 13

Swap out Communication Strategies with the strategy pattern to capture the behavior in each
special networking case. It could be that this is also returns canned responses that basically
say the network is unusable.

You could also use the Null Object Pattern to tell your application that the network has been
disconnected.

Observer

Wednesday, June 19, 13

In order to react to the changes in the network, we’d have to listen for changes to the
network status. There are various ways to achieve this, but on iOS...

Reachability

Wednesday, June 19, 13

On iOS we have a set Reachability APIs in the SystemConfiguration framework and various
open source Objective C libraries of this to make it easier for us to use it.

Call-Callback

Wednesday, June 19, 13

Call-Callback pattern

A new hardware feature in mobile phones these days is the dual core CPU. This is only going
to get more extreme as we reach the limits of Moore’s law and Physics itself. Concurrency is
going to be more and more important to mobile apps, and should already be important as all
your network operations should be performed in an asynchronous manner. The Call-Callback
pattern is a great way to know when a particular unit of work is done, and from a different
thread or worker queue.

- (void) someAsyncMethodCompletion:(void(^)
(id))block;
{
dispatch_async(background_queue, ^{

 //...do work here, in the background

 if (block) { block(result); }
 });
}

Wednesday, June 19, 13

[obj someAsyncMethodCompletion:^(id obj) {
 dispatch_async(dispatch_get_main_queue(), ^{

 //update your UI over here

 });
}];

Wednesday, June 19, 13

Wednesday, June 19, 13

Benefit: Menu
Selecting a solution to your design problem can be as simple as picking an item from a menu

Wednesday, June 19, 13

Benefit: Communication

As developers, having a common vocabulary to work with improves our communication
effectiveness. We can use this vocabulary to come up with new solutions.

Wednesday, June 19, 13

Benefit: Speedier quality development

Why did rails become so popular? Because it was opinionated, and made some decisions for
you every time. This time spent making decisions, especially the same ones, over and over
again can slow you down without even realizing it.

It was important, his
father said, to craft the
backs of cabinets and
fences properly, even

though they were hidden.
Steve Jobs by Walter Isaacson

Wednesday, June 19, 13

“He loved doing things
right. He even cared
about the look of the

parts you couldn’t see.”

- Steve Jobs

Wednesday, June 19, 13

Steve Jobs by Walter Isaacson, Chapter 1

It is important to care about the internal quality of products you build, as well as the external.

Design Patterns are proven techniques to add care and quality to your apps while not
compromising quality in a given amount of development time.

saul@magicalpanda.com

Wednesday, June 19, 13

mailto:saul@magicalpanda.com
mailto:saul@magicalpanda.com

