
Scalability Patterns &
Solutions for
Dynamic high-load Java
Websites

Beurs van Berlage, Damrak 243, Amsterdam, 20/06/2014
Ard Schrijvers, a.schrijvers@onehippo.com, ard@apache.org

mailto:a.schrijvers@onehippo.com
mailto:ard@apache.org

What Hippo does / sells

Traditionally Hippo used to sell a CMS
capable of managing content and a
customer specific site implementation.

Hippo strictly separates the editing
process from the presentation logic.

Content is stored in a generic format,
allowing it to be reused across multiple
pages and/or channels.

No longer just a CMS

No longer are we a CMS that is just about
putting content or web pages at the
conceptual center.
Today our real strength is the fact that we
have the Visitor as the focus, and on a
technical level, our delivery tier that
interacts with that visitor to serve out
relevant pages by really listening to the
visitor.

Implications

1. Every page is rendered live from the
application taking the visitor into
account

2. Serving html from a reverse caching
proxy (squid/varnish/mod_cache) is not
an option

Note that offloading css, js, images, etc to
reverse caching proxies or some CDN is
still our common practice

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring authorized

counts
7. personalization of pages
8. storing of visitor data

Amazon EC2 performance test results

Serving personalized pages and storing all
request data and accumulated visitor
characteristics, a single Hippo cluster node
already saturated the available Amazon
bandwidth

A brief history

I am working at Hippo since 2001

Lead developer Hippo’s delivery tier
(framework)

Apache committer of Jackrabbit and
Cocoon

Biggest mistake

Back in 2001, XML / XSLT was buzzing and
bleeding edge

We needed a time tracking system at
Hippo

…. so I built one by storing one XML in one
access db blob and a XSLT to transform it
into a time tracking system...with ASP.

Around 2003 we started using Cocoon

Cocoon: XML and XSLT publishing Open
Source Java framework built around the
concepts of separation of concerns

CMS and delivery tier built in Cocoon

Slide (XML Content Repository) accessed
over WebDAV

Lessons learned

Apache and community!

Separation of concerns : Content and
presentation

Request matching and the reverse: Link
rewriting references between content to
URLs.

Cocoon / XSLT was (and is) too slow

Lessons learned

Reverse caching proxies (mod_cache,
squid, varnish, ssi tricks)

Indexing content with Apache Lucene
(around 2003 that was version 1.2)

Many caching strategies and their
problems / difficulties (for developers)

Cache invalidation mechanisms (JMS
eventing)

Lessons learned

Authorization and fast search results hard
to combine

Using remote repositories is too slow if you
require many sources

Around 2005 integrated Apache Jetspeed

Apache Jetspeed: Open Source Enterprise
Portal framework and platform

★ native integration of the CMS
★ portal used as delivery tier
★ combining portlets, content and 3rd

party services in one solution

Hippo Portal

Lessons learned

Multi webapp state sharing is complex

Multi webapp orchestration of services

Writing cross webapp shared APIs

HMVC pattern for the delivery tier

2007 start Hippo CMS 7

CMS: Stateful AJAX based webapp written
in Wicket

Delivery tier framework (HST) written from
scratch

Hippo Repository: a JCR compliant
repository on top of Apache Jackrabbit

Some CMS 7 Customers

Ministry of Foreign Affairs

Dutch police : From 400 web sites to 1

“With Hippo, we rolled out the mobile site
together with the desktop site. That’s the
advantage of having a central Content
Management System that serve content to
all channels.”
http://www.cmscritic.com/how-open-source-software-transformed-a-nations-police-force/

http://www.ns.nl

● Centralized Content for a
Decentralized Organization

● 200 forms and 68 applications

● MyANWB portal

● Content reuse in 16 mobile
apps and 7 publications

● 120 content editors

What all customers have in common

Most have high volume sites

They all use Hippo differently to deliver
(personalized) content
to different channels

Hippo’s business model

Open Source stack:

Standing on the shoulders of giants

Hippo’s stack

 Apache License Version 2.0

except some enterprise modules on the periphery of our stack

Used Open Source licenses

Apache License Version 2.0
Day Specification License (JCR)
Python-2.0
BSD-2 / BSD-3
MIT / X11
EDL 1.0
EPL 1.0
MPL 1.1 / 2.0
W3C Software License
GPLv3 under Sensha OS Exception for Application/Development (ExtJS)
Indiana University Extreme! Lab Software License Version 1.1
CDDL 1.0 / 1.1
CPL 1.0
CC-A 2.5/3.0
CC-BY 2.5
ICU
SIL OFL 1.1
Public Domain
WTFPL 2.0

10,000 foot view Hippo CMS 7

Hippo Repository on top of Jackrabbit

Jackrabbit is a reference implementation of
Java Content Repository (JSR-170/JSR-283)

A content repository is a hierarchical
content store with support for structured
and unstructured content, full text search,
versioning, transactions, observation, and
more.

JCR in a nutshell

public interface Node {
 Node getNode(String relPath);
 Node addNode(String relPath);
 Property getProperty(String name)
 Property setProperty(String name,
 Value value);
}

Jackrabbit architecture

Source: http://jackrabbit.apache.org/how-jackrabbit-works.html

Jackrabbit clustering

Always have a repository embedded in the
containers for the webapps that require a
repository and do not use remote
protocols

How to query the repository

1. A subset of XPath (JSR-170)
2. A subset of SQL (JSR-170)
3. JCR-SQL2 (JSR-283)
4. JCR-JQOM (JSR-283)

Complex XPath query

/jcr:root/nodes//element(*,my:type)
 [jcr:contains(.,'jsr') and
 my:subnode/@jcr:primaryType='my:html']
 /my:body[jcr:contains(.,'170')]

Jackrabbit (Lucene) index

Challenges:
1. Hierarchical queries cannot be mapped

easily to Lucene
2. After Session#save() instant reflection

of search results required (real-time
search) but at the time of JSR-170
Lucene was at version 1.4.

3. Lucene indexes always need to be
local: You cannot bring the data to the
computation!!

4. Search results should return only
authorized hits

Jackrabbit (Lucene) index

Challenge 1:

Hierarchical queries cannot be mapped
easily to Lucene

Solution 1:

Just try to avoid them even though Adobe
(Day) developers did an amazing job

Jackrabbit (Lucene) index

Challenge 2:

After Session#save() instant reflection of
search results required (real-time search)

Solution 2:

A set of Lucene indexes instead of a single
one. Again Adobe (Day) developers did an
amazing job...with Lucene 1.4!!

Jackrabbit (Lucene) index

Challenge 3:

Lucene indexes always need to be local:
You cannot bring the data to the
computation!!

Solution 3:

Every Jackrabbit cluster node has a local
Lucene (multi-) index.

Jackrabbit (Lucene) index

Challenge 4:

Search results should return only
authorized hits

Solution 4:

Hippo chose for an authorization model on
top of JCR that could be mapped to
Lucene queries and could be AND-ed with
every normal query

Example Authorization Query

(+_:HIPPO_PT_FACET:13109076:templatetype) (+_:HIPPO_PT_FACET:13109076:namespace)
(+_:HIPPO_PT_FACET:13109076:namespacefolder) (+_:HIPPO_PT_FACET:13109076:field)
(+_:HIPPO_PT_FACET:13109076:nodetype) (+_:HIPPO_PT_FACET:7275975:templatequery)
(+_:HIPPO_PT_FACET:14608509:templateset) (+_:HIPPO_PT_FACET:13109076:prototypeset)
(+HIPPOSORTABLE::hipposysedit:prototype) (+_:HIPPO_PT_FACET:14697776:facetresult)
(+_:HIPPO_PT_FACET:16174620:deriveddefinition) (+(_:HIPPO_PT_FACET:16174620:propertyreference
_:HIPPO_PT_FACET:16174620:builtinpropertyreference _:HIPPO_PT_FACET:16174620:
relativepropertyreference
_:HIPPO_PT_FACET:16174620:resolvepropertyreference)) (+_:HIPPO_PT_FACET:16174620:
securityfolder)
(+_:HIPPO_PT_FACET:14697776:handle) (+_:HIPPO_PT_FACET:16174620:applicationfolder)
(+HIPPOSORTABLE::liveuser +(_:HIPPO_PT_FACET:16174620:user _:HIPPO_PT_FACET:16174620:
externaluser))
(+_:HIPPO_PT_FACET:14697776:facetselect) (+_:HIPPO_PT_FACET:16174620:queryfolder)
(+_:HIPPO_PT_FACET:16174620:configuration) (+_:HIPPO_PT_FACET:14219914:report)
(+_:HIPPO_PT_FACET:16174620:propertyreferences) (+_:HIPPO_PT_FACET:16762557:root)
(+_:HIPPO_PT_FACET:7275975:translations) (+7275975:HIPPOFACET:holder:liveuser)
(+_:HIPPO_PT_FACET:16174620:facetsubsearch) (+_:HIPPO_PT_FACET:16174620:userfolder)
(+_:HIPPO_PT_FACET:14697776:translation) (+_:HIPPO_PT_FACET:7275975:templates)
(+_:HIPPO_PT_FACET:14697776:facetsearch) (+_:HIPPO_PT_FACET:5688619:unstructured)
(+_:HIPPO_PT_FACET:16174620:derivativesfolder) (+(+MatchAllDocsQuery -HIPPOSORTABLE::
hipposysedit:prototype)
+((+MatchAllDocsQuery -_:FACET_PROPERTIES_SET:14697776:availability)
14697776:HIPPOFACET:availability:live) +(_:HIPPO_PT_FACET:14697776:document
_:HIPPO_PT_FACET:14093235:config _:HIPPO_PT_FACET:9867704:exampleAssetSet
_:HIPPO_PT_FACET:9867704:exampleImageSet _:HIPPO_PT_FACET:9867704:imageset
_:HIPPO_PT_FACET:9867704:stdAssetGallery _:HIPPO_PT_FACET:9867704:stdImageGallery
_:HIPPO_PT_FACET:9867704:stdgalleryset _:HIPPO_PT_FACET:7275975:directory
_:HIPPO_PT_FACET:7275975:document _:HIPPO_PT_FACET:7275975:folder
_:HIPPO_PT_FACET:7275975:gallery _:HIPPO_PT_FACET:7275975:space
_:HIPPO_PT_FACET:13109076:nodetype _:HIPPO_PT_FACET:14219914:report
_:HIPPO_PT_FACET:11431386:basedocument _:HIPPO_PT_FACET:11431386:newsdocument
_:HIPPO_PT_FACET:11431386:textdocument)) (+_:HIPPO_PT_FACET:5688619:versionLabels)
(+_:HIPPO_PT_FACET:5688619:version) (+_:HIPPO_PT_FACET:5688619:versionHistory)
(+_:HIPPO_PT_FACET:16762557:system) (+_:HIPPO_PT_FACET:5688619:frozenNode)

Example Authorization Query Continued

(+_:HIPPO_PT_FACET:5688619:versionedChild) (+_:HIPPO_PT_FACET:16762557:versionStorage)
(+_:HIPPO_PT_FACET:12208518:item) (+_:HIPPO_PT_FACET:12208518:folder)
(+_:HIPPO_PT_FACET:1000430:allowedSingleWhitespaceElement) (+_:HIPPO_PT_FACET:1000430:
cleanupElement)
(+_:HIPPO_PT_FACET:1000430:cleanup) (+_:HIPPO_PT_FACET:1000430:serializationElement)
(+_:HIPPO_PT_FACET:1000430:serialization) (+_:HIPPO_PT_FACET:1000430:config)
(+_:HIPPO_PT_FACET:16174620:modulefolder) (+_:HIPPO_PT_FACET:16174620:module)
(+_:HIPPO_PT_FACET:7776938:workflow) (+_:HIPPO_PT_FACET:1717184:request)
(+_:HIPPO_PT_FACET:11744324:triggers) (+_:HIPPO_PT_FACET:11744324:trigger) (+_:HIPPO_PT_FACET:
16174620:type)
(+_:HIPPO_PT_FACET:16174620:workflow) (+_:HIPPO_PT_FACET:16174620:ocmqueryfolder)
(+_:HIPPO_PT_FACET:16174620:workflowcategory) (+_:HIPPO_PT_FACET:14697776:request)
(+_:HIPPO_PT_FACET:16174620:workflowfolder) (+_:HIPPO_PT_FACET:16174620:types)
(+_:HIPPO_PT_FACET:14697776:query) (+_:HIPPO_PT_FACET:7776938:clusterfolder)
(+_:HIPPO_PT_FACET:7776938:application) (+((+MatchAllDocsQuery -_:FACET_PROPERTIES_SET:0:
cluster.name)
(+MatchAllDocsQuery -0:HIPPOFACET:cluster.name:hst-editor))
+_:HIPPO_PT_FACET:7776938:plugin +(+MatchAllDocsQuery
-0:HIPPOFACET:plugin.class:org.hippoecm.frontend.plugins.reviewedactions.
PublishAllShortcutPlugin)
+((+MatchAllDocsQuery -_:FACET_PROPERTIES_SET:0:cluster.name)
(+MatchAllDocsQuery -0:HIPPOFACET:cluster.name:cms-dev)) +(+MatchAllDocsQuery
-0:HIPPOFACET:plugin.class:org.hippoecm.frontend.plugins.cms.admin.AdminPerspective)
+((+MatchAllDocsQuery -_:FACET_PROPERTIES_SET:0:cluster.name)
(+MatchAllDocsQuery -0:HIPPOFACET:cluster.name:cms-tree-views/configuration)))
(+_:HIPPO_PT_FACET:7776938:plugincluster) (+_:HIPPO_PT_FACET:7776938:pluginconfig)

Can such a to-be-AND-ed query perform?

Results of the Authorization Query

Also users with little read access have
instant authorized searches

Correct total hit size from Lucene

Correct instant faceted navigation
authorized counts

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring authorized

counts
7. personalization of pages
8. storing of visitor data

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring authorized

counts
7. personalization of pages
8. storing of visitor data

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring

authorized counts
7. personalization of pages
8. storing of visitor data

Hippo’s delivery tier in a nutshell

1. Open Source (Apache License Version 2.0)

2. Acronym: HST
3. It’s not a toolkit but a framework
4. Pluggable container which is using Spring

Framework configurations
5. Its main phases can be divided in

a. A matching & link rewriting phase
b. A processing phase (default a HMVC pattern)

6. The configuration for (5) is stored in the repository
and runtime modifiable

7. The HST keeps an in memory model for (6)
8. It’s primarily content driven, not page driven: Hippo

CMS manages content & page definitions, not pages.

Hippo’s delivery tier

Channel Manager

Challenge

Having many concurrent visitors while
runtime adding sites and/or changing
URL's of existing sites and changing the
appearance (requiring model reloads)
while supporting 500+ channels including
cross domain (site) link rewriting

General pattern to get around this

Use a lazy append-only (immutable) in
memory model tied to a request combined
with request bound flyweights and be
stateless (by default)

Immutability : Vertical scaling
Stateless : Horizontal scaling

CQRS (Command Query Responsibility
Segregation) pattern to write changes to
the model without requiring the query
(read) model

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring

authorized counts
7. personalization of pages
8. storing of visitor data

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring

authorized counts
7. personalization of pages
8. storing of visitor data

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring

authorized counts
7. personalization of pages
8. storing of visitor data

Next Challenge: Deliver different pages to
different visitors

Persona Consumer example

Characteristics

Technical requirements

Having many concurrent visitors while

1. serving relevant (personalized) pages*
2. storing their request logs
3. storing their accumulated visitor data
4. computing visitor profiles
5. tracking cluster wide visitor statistics
6. staying stateless (by default)

* The relevance module is part of Hippo enterprise support

Statistics required to be able to support:

“facts that happen less frequently are
more important when they happen”

For this we require cluster wide averages.
More precisely, we use cluster wide
exponential moving averages.

Storage solutions

1. Store request log as json in Couchbase
2. Store (and retrieve) visitor accumulated

data as json in Couchbase
3. Use Couchbase Map and Reduce

Views for statistics

Relevant (personalized) page creation

Context Aware Page Cache

Including thundering herd protection

And 100% personalized parts?

Built-in support for async AJAX/ESI/SSI

Recap Hippo’s delivery tier

You do not need to tune it to make it fast.

However a fast framework
does not guarantee
a fast/snappy site

Delivery tier diagnostics

1. Possible to switch on/off in production
2. Dissects a request through the

framework and monitors time spend in
different parts

3. Output to log or some storage like
ElasticSearch and inspect it with Kibana

Requirements for Hippo’s delivery tier
framework

1. support many concurrent visitors
2. instantly reflect frequently changing

content
3. runtime adding sites and/or changing

URL's of existing sites
4. runtime changing the appearance of

sites
5. search including authorization
6. faceted navigation requiring

authorized counts
7. personalization of pages
8. storing of visitor data

Diagnostics

We are hiring!

http://www.onehippo.com/en/careers

