e
.'o neotechnology

Let Me Graph That For You

@ianSrobinson
ian@neotechnology.com

@neod;j

complexity = f(size, variable structure, connectedness)

b |
— UBSIn_\Le_stTentBank

| A

e
'Meyrill_l.y

@neod;j

Graphs Are Everywhere

Sl

.QO'OOO. .
, OO ‘Q..o.

@neod;j

Graph Databases

* Store
* Manage
* Query

@neod;j

Neodj is a Graph Database

JVM
based

Billions of
entities

@neod;j

Labeled Property Graph

PURCHASED
date: 19-07-2012

Person
Author

title: The Tailor of
Panams PURCHASED

isbn: 034093770X date: 03-02-2011

Person

name: John Le Carre
name: Alan

born: 19-10-1931

PURCHASED
date: 09-09-2011

INFLUENCED_BY

PURCHASED
date: 05-07-2011

Person
Author

title: Our Man in
Havana

Person

name: Graham Greene name: lan

born: 02-10-1904

died: 03-04-1991 isbn: 0099286084 onalty 5652

@neod;j

Making Connections

@neod;j

Triadic Closure — Closing Triangles

FRIEND FRIEND

@neod;j

Triadic Closure — Closing Triangles

FRIEND FRIEND

@neod;j

Triadic Closure — Closing Triangles

FRIEND FRIEND

FRIEND

@neod;j

Recommending New Connections

@neod;j

Immediate Friendships

FRIEND

@neod;j

Means and Motive

FRIEND FRIEND

@neod;j

Recommendation

FRIEND FRIEND

@neod;j

Recommend New Connections

MATCH (user:User{name:'Terry'})
- [: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(Cother)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

@neod;j

Find Terry

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

@neod;j

Find Terry’s Friends’ Friends

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

@neod;j

Find Terry’s Friends’ Friends

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)

RETURN other.name AS name,
COUNT(Cother) AS score ﬂ
ORDER BY score DESC

FRIEND FRIEND

S

@neod;j

...Who Terry Doesn’t Know

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

=

FRIEND FRIEND

Count Matches Per Person

MATCH (user:User{name:'Terry'})

-[: FRIEND*2] -

(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,

COUNT(other) AS score
ORDER BY score DESC

@neod;j

Return The Results

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

@neod;j

Taking Account of Friendship Strength

MATCH (user:User{name:'Terry'})
-[rels:FRIEND*2]-
(other:User)

WHERE ALLCr IN rels WHERE r.strength > 1)

AND NOT (user)-[:FRIEND]-(Cother)

RETURN other.name AS name, *

COUNT(other) AS score

ORDER BY score DESC FRIEND FRIEND

strength > 1 strength > 1

Nowhere To Hide

@neod;j

First-Party Fraud

* Fraudsters apply for credit
— No intention of repaying

* Appear normal until they “burst out”

— Clear out accounts

* Fraud ring
— Share bits of identity (NI, address, telephone)
— Coordinated “burst out”

@neod;j

Fraud Ring

Tel 0208
674 5742

Address

87 Mmster
Tel: 07074
633 7654

@neod;j

Query

* Create new applicant

* Connect applicant to identity info
— Reuse existing identify info where possible

Then

» Select applicant’s identity info
* Crawl surrounding graph

— Look for expansive clusters of account holders

@neod;j

Path Calculations

@neod;j

Problem

* Increase in parcel traffic
— Amazon, eBay
— Current infrastructure can’t cope

* Calculate optimal route

— Under 40ms
— Routes vary over time

* Numbers:
— 2000-3000 parcels per second

— 25 national parcel centres, 2 million postcodes, 30
million address

@neod;j

Period 1

CONNECTED_TO

delivery- delivery-
base-2 base-3
~
~ e =~ ~ N S ~ N
DELIVERY_ROUTE \ N
’ \ N
1 \ \
\ \ N
¥ g X 'y
/’\ S~ - < .\ - ‘
- 1 So T~ S~ \
i \ ~ S~ SS \
~ -~ ~
| S S~ S - \
\ N So N \
\ \ N \ \
\ \ \ \ \
\ \ \ \ \

\ \ \ \ \

\ \‘

@

@neod;j

Period 2

CONNECTED_TO

delivery- delivery- delivery-
base-1 base-2 base-3
. [g RN
Ve I / ~
e / AN

DELIVERY_ROUTE ,’ / ‘\

// / ” !

/ 7 / !

7
y V'Y y)
- - - - . ‘\
- - -7 Vi 4 \ SS
- - P /7 \ 4 \ | SS
_-- P , \ , 4 N \ ~ <
-~ e 4 \ N | \
- - ’ \ 4 \
-7 - / | \
- , / \ / \
4 , / \ \] 1
4 ! / /
7 / / \ \
/ ! \ ! / /
/ / X | / /
1 / \ 1 / /

@neod;j

Period 3

CONNECTED_TO

delivery- delivery- delivery-
base-1 base-2 - base-3
L7 e~

] ~—-—_ I

| // - o I -

, Y I T~<

DELIVERY_ROUTE /))/ R
’
/7 / 4 ~
1 1 4 \\
e ' // N
V3 < A
. ‘\\ e .
/ \ h \\ / SO S~ -
/ N ! N / ~ RN =<
\ N ~ S~
4 \ / \\ / \ So S~
! \ / \ AN ~
/] N \\
\ \

/
\
/ /]
/ ; \ \
/ /
\ \

/ h ,

@neod;j

/

|

q--__-"

The Full Graph

delivery-
base-3

Oy ¥ MRS

/ v\ /

-
~

\

vy

@neod;j

CONNECTED_TO

cost=3 parcel-
start_date = 1350255600000
end_date = 1350860400000 centre-1

CONNECTED_TO
cost=2

start_date = 1350860400000

end_date = 1351465200000

CONNECTED_TO
cost: 6
start_date: 1351465200000
end_date: 1352070000000

delivery-
base-1

@neod;j

Steps 1 and 2

‘V‘ﬂ

y

4

Xy

b

1\

1

|

|
A4

)

\

V¥

»

@neod;j

4

Xy

b

\

I/
|
V)

\

v ¥

\
\
\
\
\

4

»

@neod;j

Paths

MATCH path=(from{name:'X"'})
-[: CONNECTED_TO*1. .4]->
(to{name:'Y'})
RETURN path AS shortestPath,
reduce(weight=0,
r 1n relationships(path) |
weight + r.weight) AS total
ORDER BY total ASC
LIMIT 1

@neod;j

Match Variable-Length Path

MATCH path=(from{name:'X"'})
-[: CONNECTED_TO*1. .4]->
(to{name:'Y'})
RETURN path AS shortestPath,
reduce(weight=0,
r 1n relationships(path) |
weight + r.weight) AS total
ORDER BY total ASC
LIMIT 1

@neod;j

Calculate Path Weight

MATCH path=(from{name:'X"'})
-[: CONNECTED_TO*1. .4]->
(to{name:'Y'})
RETURN path AS shortestPath,
reduce(weight=0,
r 1n relationships(path) |
weight + r.weight) AS total
ORDER BY total ASC
LIMIT 1

@neod;j

Return Shortest Weighted Path

MATCH path=(from{name:'X"'})
-[: CONNECTED_TO*1. .4]->
(to{name:'Y'})
RETURN path AS shortestPath,
reduce(weight=0,
r i1n relationships(path) |

weight + r.weight) AS total
ORDER BY total ASC
LIMIT 1

@neod;j

Full Query

MATCH (s:Location {name:{startLocation}}),
(e:Location {name:{endLocation}})
MATCH uplLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(Cdbl)
WHERE all(r in relationships(uplLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH e, uplLeg, dbl
MATCH downLeg = (db2)-[:DELIVERY_ROUTE*1..2]->(e)
WHERE all(r in relationships(downLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH dbl, db2, uplLeg, downLeg
MATCH topRoute = (db1)<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-(db2)
WHERE all(r 1in relationships(topRoute)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH uplLeg, downLeg, topRoute,
reduce(weight=0, r in relationships(topRoute) | weight+r.cost) AS score
ORDER BY score ASC
LIMIT 1
RETURN (nodes(uplLeg) + tail(nodes(topRoute)) + tail(nodes(downLeg))) AS route

@neod;j

neo4j.com/online_course

Online Training:
Getting Started with
Neodj

Learn Neo4j at your own pace and time
with our free online training course. Get
introduced to graph databases, learn the
core functionality of Neo4j, and practice

Cypher with this engaging and interactive ;: 7‘ - : ONLINE
course. -
| lIVANNE

Get started today »

@neod;j

graphdatabases.com

Databases

lan Robinson,

O’REILLY* Jim Webber & Emil Eifrem

Thank you

@ianSrobinson
#neod|

@neod;j

