SOLLD
Deconstruction

Kevlin Henney
kevilingcurbralan. com
@leviinfenney

e

L

4

v

oftware Architecture [Volume 3|

Pattern- -Oriented 5
On Patterns and Pattern Lar

MM&AM%N%W

[§8] Frank Buschmann

[3] Kevlin Henney

{%] Douglas C Schmidt
Hm B

. O L -+

Single Responsibility
Open-Closed

Liskov Substitution
Interface Segregation

Dependency Inversion

principle

* g fundamental truth or proposition that serves as the
foundation for a system of belief or behaviour or for a
chain of reasoning.

= morally correct behaviour and attitudes.

= g general scientific theorem or law that has numerous
special applications across a wide field.

* g natural law forming the basis for the construction or
working of a machine.

Oxford Dictionary of English

pattern

= g reqular form or sequence discernible in the way in
which something happens or is done.

= an example for others to follow.

= g particular recurring design problem that arises in
specific design contexts and presents a well-proven
solution for the problem. The solution is specified by
describing the roles of its constituent participants, their
responsibilities and relationships, and the ways in
which they collaborate.

Concise Oxford English Dictionary

Pattern-Oriented Software Architecture, Volume 5: On Patterns and Pattern Languages

Expert
Proficient
Competent

Advanced Beginner

Novice

Single Responsibility

In object-oriented programming, the single responsibility
principle states that every object should have a single
responsibility, and that responsibility should be entirely
encapsulated by the class. All its services should be narrowly
aligned with that responsibility.

http://en.wikipedia.org/wiki/Single _responsibility principle

The term was introduced by Robert C. Martin [...]. Martin
described it as being based on the principle of cohesion, as

described by Tom DeMarco in his book Structured Analysis and
Systems Specification.

http://en.wikipedia.org/wiki/Single _responsibility principle

=P

-

rm,,
T S

2]
w
o
w
w
(O]
<
-
=]
o
=
[}
o
[}
(7]
w
o
o
=z
=]
g
>

310 STRUCTURED ANALYSIS AND SYSTEM SPECIFICATION

25.2.4 Cohesion

Cohesion is a good quality exhibited by some design structures. Before I
define it, look at Fig. 101, an alternate Structure Chart for the space vehicle
guidance system we considered earlier. Fig. 101 is an abominable design. It is
proof positive that one can design poorly even using a Structure Chart.
(‘“‘Plowin’ ain’t potatoes.””) What the design of Fig. 101 lacks is cohesion.
Every module on the figure is weakly cohesive.

Fig. 99, on the other hand, is made up of strongly cohesive modules. By
comparing the two figures, you can probably see exactly what cohesion is. It
has to do with the integrity or ‘‘strength’’ of each module. The more valid a
module’s reason for existing as a module, the more cohesive it is.

Cohesion- is a measure of the strength of association of the elements in-
side a module. A highly cohesive module is a collection of statements and data
items that should be treated as a whole because they are so closely related.
Any attempt to divide them up would only result in increased coupling and de-
creased readability.

R

(e & . G g oo S . w— Ay = e [SRR

Gl ¢+ e o Vg W e e Wrmves (N fe S e e
Pueans e o el o Fg W e A ey
ot e s e e ey R ¢ rmree (N

——
PP o s B e e # Ny
Voo Smbon = % Wgo: = Goed s Buo o

-
PR T o e o hand w Sl o A Sy s b
B et . i e e
Y. T T ok LR R
e | emm @ ey s s e T Wy e e

Cohesion- is a measure of the strength of association of the elements in-
side a module. A highly cohesive module is a collection of statements and data
items that should be treated as a whole because they are so closely related.
Any attempt to divide them up would only result in increased coupling and de-
creased readability.

() Glenn Vanderburg: B

Wi

= cC f www.vanderburg.org

Glenn Vanderburg: Blog

1 of 1 article . .

Cohesion
Mon, 31 Jan 2011 (16:43)

Developers | encounter usually have a good grasp of coupling—not only what it
means, but why it's a problem. | can’t say the same thing about cohesion. One of
the sharpest developers | know sometimes has problems with the concept, and
once told me something like "that word doesn’t mean much to me." I've come to
believe that a big part of the problem is the word "cohesion” itself. "Coupling" is
something everyone understands. "Cohesion," on the other hand, is a word that
is not often used in everyday language, and that lack of familiarity makes it a

difficult word for people to hang a crucial concept on.

I've had some success teaching the concept of cohesion using an unusual
approach that exploits the word’s etymology. | know that sounds unlikely, but
bear with me. In my experience, it seems to register well with people.

Cohesion comes from the same root word that "adhesion” comes from. It's a
word about sticking. When something adheres to something else (when it’s
adhesive, in other words) it's a one-sided, external thing: something (like glue)
is sticking one thing to another. Things that are cohesive, on the other hand,
naturally stick to each other because they are of like kind, or because they fit so
well together. Duct tape adheres to things because it's sticky, not because it
necessarily has anything in common with them. But two lumps of day will cohere
when you put them together, and matched, well-machined parts sometimes
seem to cohere because the fit is so precise. Adhesion is one thing sticking to

We refer to a sound line of reasoning,
for example, as coherent. The thoughts
fit, they go together, they relate to each
other. This is exactly the characteristic
of a class that makes it coherent: the
pieces all seem to be related, they seem
to belong together, and it would feel
somewhat unnatural to pull them apart.
Such a class exhibits cohesion.

This is the Unix philosophy: Write
programs that do one thing and do

it well. Write programs to work
together.

Doug Mcliroy

. Java™ Platform
Overview | Package | Class Use Tree Deprecated Index Help Standard Ed. 7

Prev Package Next Package Frames No Frames All Classes

Package java.util

Contains the collections framework, legacy collection classes, event model, date and time
facilities, internationalization, and miscellaneous utility classes (a string tokenizer, a random-
number generator, and a bit array).

utility
= the state of being useful, profitable or beneficial

= useful, especially through having several functions
= functional rather than attractive

Concise Oxford English Dictionary

#include <stdlib.n»

Every class should
embody only about 3-5
distinct responsibilities.

Grady Booch, Object Solutions

|d] (How to Write a (Lis...

= C ff © norvig.com/lispy.html
"HNUMbDErs Decolie NUmbers, every OLnNer LOEen 18 g Sympool. ™
try: return int (token)
except ValueError:
try: return float (token)
except ValueError:
return Symbol (token)

Finally we'll add a function. to_string. to convert an expression back into a Lisp-readable string. and a function repl. which stands for
read-eval-print-loop, to form an interactive Lisp interpreter:

def to string(exp):
"Convert a Python object back into a Lisp-readable string."
return ' ('+' '.join(map(to_string, exp))+')' if i=a(exp, li=st) else =tr(exp)

def repl (prompt='"li=s.pv> '):
"A prompt-read-eval-print loop.™

While ILTue:
val = eval (parse (raw_input (prompt)))
if wval is not None: print to string(val)

Here it is at work:

>>»> repl|()

lis.pv>» (define area (lambda (r) (* 3.1415%2653 (* © &©))))

li=z.py> (area 3)

28.2T74333877

lis.py> (define fact (lambda (n) (if (<= n 1) 1 (* n (fact (- m 1)})))}))

lis.py> (fact 10)

3628800

lis.py> (fact 100)
033262154430944152681699238856266T00490715%96826438162146859206389521 7590083220901
56089414639 7615651828625309T792082T2237568251185210916864000000000000000000000000
lis.py> (area (fact 10))

4,1369087198e+13

liz.py> (define first car)

lis.py> (define rest cdr)

liz.py> (define count (lambda (item L)} (if L (+ (equal? item (first L)) (count item (rest L)}) 0)}))
lis.py> (count O (list 0 1 2 3 0 0))

.p¥> (count (guote the) (guote (the more the merrier the bigger the better)))

®) REILLY

+SA1)—

vl

o=
L

RLRLERANR \
\\\\\\\\\ \\\\‘\'

One of the most foundational
principles of good design is:

Gather together those things |
that change for the same AN
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,
should not have more than one
reason to change.

Kevlin Henney &
HH SA =6
¥H X Rw

Interface Segregation

Interface inheritance (subtyping) is used
whenever one can imagine that client code
should depend on less functionality than the full
interface. Services are often partitioned into
several unrelated interfaces when it is possible to
partition the clients into different roles. For
example, an administrative interface is often
unrelated and distinct in the type system from
the interface used by “normal” clients.

"General Design Principles”
CORBAservices

The dependency
should be on the
interface, the
whole interface,
and nothing but
the interface.

() Glenn Vanderburg: B

Wi

= cC f www.vanderburg.org

Glenn Vanderburg: Blog

1 of 1 article . .

Cohesion
Mon, 31 Jan 2011 (16:43)

Developers | encounter usually have a good grasp of coupling—not only what it
means, but why it's a problem. | can’t say the same thing about cohesion. One of
the sharpest developers | know sometimes has problems with the concept, and
once told me something like "that word doesn’t mean much to me." I've come to
believe that a big part of the problem is the word "cohesion” itself. "Coupling" is
something everyone understands. "Cohesion," on the other hand, is a word that
is not often used in everyday language, and that lack of familiarity makes it a

difficult word for people to hang a crucial concept on.

I've had some success teaching the concept of cohesion using an unusual
approach that exploits the word’s etymology. | know that sounds unlikely, but
bear with me. In my experience, it seems to register well with people.

Cohesion comes from the same root word that "adhesion” comes from. It's a
word about sticking. When something adheres to something else (when it’s
adhesive, in other words) it's a one-sided, external thing: something (like glue)
is sticking one thing to another. Things that are cohesive, on the other hand,
naturally stick to each other because they are of like kind, or because they fit so
well together. Duct tape adheres to things because it's sticky, not because it
necessarily has anything in common with them. But two lumps of day will cohere
when you put them together, and matched, well-machined parts sometimes
seem to cohere because the fit is so precise. Adhesion is one thing sticking to

We refer to a sound line of reasoning,
for example, as coherent. The thoughts
fit, they go together, they relate to each
other. This is exactly the characteristic
of a class that makes it coherent: the
pieces all seem to be related, they seem
to belong together, and it would feel
somewhat unnatural to pull them apart.
Such a class exhibits cohesion.

We refer to a sound line of reasoning,

for example, as coherent. The thoughts
fit, they go together, they relate to each
other. This is exactly the characteristic of
an interface that makes it coherent: the
pieces all seem to be related, they seem
to belong together, and it would feel
somewhat unnatural to pull them apart.
Such an interface exhibits cohesion.

public interface Linel0

{
String read();

void write(String toWrite);

public interface LineReader

{
}

public interface LineWriter

{
}

String read();

void write(String toWrite);

Liskov Substitution

In a purist view of object-oriented methodology,
dynamic dispatch is the only mechanism for
taking advantage of atiributes that have been
forgoiten by subsumption.

This position is often taken on absiraction
grounds: no knowledge should be obtainable
about objects except by invoking their methods.

In the purist approach, subsumption provides a
simple and effective mechanism for hiding
private atiributes.

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

generalisation

commonality

!
i

variation

specialisation

f: Guidelines for Overloadin.., =

€« - C N = http://msdn.microsoft.com/en-us/library/ms173147(V5.80).aspx

» O- £

Any derived class that ca

: TwoDPodint

int %, int y, int z)

public owverride em.0bject obj)

1

// If parameter
ThreeDPoint p = ob
if ((chject)p == nu

o ThreeDPaoint return false

return false;

/f Return true if the fields ma®
return base.Equals{cbj) && z == p.

bool Equals(ThreeDPoint p)

n true if the fields match:
g, Equals((TwoDPoint)p) && z

d do so before finishing its comparison, In the
or a null parameter and compares the type of
antation of Equals on the derived class the

4]

public class RecentlyUsedList

{
public int Count
{
get ...
}

public string this[int index]
{

}
public void Add(string newItem) ...

get ...

public class RecentlyUsedList
{

private IList<string> items = new List<string>();
public int Count

{
get
{
return items.Count;
}
}
public string this[int index]
{
get
{
return items[index];
}
}
public void Add(string newItem)
{
if(newItem == null)
throw new ArgumentNullException();
items.Remove (newItem);
items.Insert(0, newItem);
}

public class RecentlyUsedList : List<string>

{

public override void Add(string newItem)
{
if(newItem == null)
throw new ArgumentNullException();
items.Remove (newItem) ;
items.Insert(0, newItem);

namespace List spec

{

[TestFixture]

public class Addition

{
private List<string> list;
[Setup]
public void List is initially empty()
{

list = ...

}
[Test]
public void Addition of non null _item is appended() ...
[Test]
public void Addition of null is permitted() ...
[Test]

public void Addition of duplicate item is appended() ...

list = new List<string>();

Addition of non null item is appended
Addition of null is permitted

Addition of duplicate_item is appended

list = new RecentlyUsedList();

Addition of non null item is appended
Addition of null is permitted

Addition of duplicate_item is appended

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

What is wanted here is something like the
following substitution property

for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted' here is something like the
tollowing substitution property: If for each
object ol of type S there is an object 02 of type 1
such that for all programs P defined in terms ot 1,
the behavior of I'is unchanged when 01 is
substituted for 02, then S 1s a subtype ot 1.

Barbara Liskoo
‘Data Abstraction and Hierarchy"

Open-Closed

The principle stated that a good module structure
should be both open and closed:

Closed, because clients need the module’s
services to proceed with their own development,
and once they have settled on a version of the
module should not be affected by the
infroduction of new services they do not need.

Open, because there is no guarantee that we will
include right from the start every service
potentially useful to some client.

Berirand Meyer
Object-Oriented Software Construction

[...] A good module structure should be
[...] closed [...] because clients need
the module's services to proceed with
their own development, and once they
have settled on a version of the
module should not be affected by the
infroduction of new services they do
hot need.

Bertrand Meyer
Object-Oriented Software Construction

[...] A good module structure should be
[...] open [...] because there is no
guarantee that we will include right
from the start every service potentially
useful to some client.

Berirand Meyer
Object-Oriented Software Construction

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted' here is something like the
tollowing substitution property: If for each
object ol of type S there is an object 02 of type 1
such that for all programs P defined in terms ot 1,
the behavior of I'is unchanged when 01 is
substituted for 02, then S 1s a subtype ot 1.

Barbara Liskoo
‘Data Abstraction and Hierarchy"

A myth in the object-oriented design
community goes something like this:

If you use object-oriented technology,
you can take any class someone else
wrote, and, by using it as a base class,
refine it to do a similar task.

Robert B Murray
C++ Strategies and Tactics

Published Interface is a term | used (first in
Refactoring) to refer to a class interface that's used
outside the code base that it's defined in.

The distinction between published and public is
actually more important than that between public and
private.

The reason is that with a non-published interface you
can change it and update the calling code since it is all
within a single code base. [...] But anything published
so you can't reach the calling code needs more
complicated treatment.

Martin Fowler
http://martinfowler.com/bliki/PublishediInterface.html

Dependency Inversion

In object-oriented programming, the dependency inversion
principle refers to a specific form of decoupling where
conventional dependency relationships established from high-
level, policy-setting modules to low-level, dependency
modules are inverted (i.e. reversed) for the purpose of
rendering high-level modules independent of the low-level
module implementation details.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

The principle states:

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details. Details should
depend upon abstractions.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

inversion, noun

the action of inverting or the state of being
inverted

reversal of the normal order of words,
normally for rhetorical effect

an inverted interval, chord, or phrase

a reversal of the normal decrease of air
temperature with altitude, or of water
temperature with depth

”SLEARN

What happen they’'re built

L

/ f’[E l i’ LE HEJ

yccseen,

SIFF
SAACE LAV
SERVICES
SKIN
STRUCTURE
SITE

Stewart Brand, How Buildings Learn
See also http://www.laputan.org/mud/

package com.sun...;

Scenario buffering by dot-voting possible changes and invert dependencies as needed

®) REILLY

+SA1)—

vl

o=
L

RLRLERANR \
\\\\\\\\\ \\\\‘\'

One of the most foundational
principles of good design is:

Gather together those things |
that change for the same AN
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,
should not have more than one
reason to change.

Kevlin Henney &
HH SA =6
¥H X Rw

. O L -+

Single Responsibility
Open-Closed

Liskov Substitution
Interface Segregation

Dependency Inversion

Expert
Proficient
Competent

Advanced Beginner

Novice

) S WILEY SERIES IN
P"Bl SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE

ARCHITECTURE

On Patterns and Pattern Languages

Volume 5

Frank Buschmann
Kevlin Henney

Douglas C. Schmidt

