
SOLID

Deconstruction

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

S

O

L

I

D

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

principle

 a fundamental truth or proposition that serves as the
foundation for a system of belief or behaviour or for a
chain of reasoning.

 morally correct behaviour and attitudes.

 a general scientific theorem or law that has numerous
special applications across a wide field.

 a natural law forming the basis for the construction or
working of a machine.

Oxford Dictionary of English

pattern

 a regular form or sequence discernible in the way in
which something happens or is done.

 an example for others to follow.

 a particular recurring design problem that arises in
specific design contexts and presents a well-proven
solution for the problem. The solution is specified by
describing the roles of its constituent participants, their
responsibilities and relationships, and the ways in
which they collaborate.

Concise Oxford English Dictionary

Pattern-Oriented Software Architecture, Volume 5: On Patterns and Pattern Languages

Expert

Proficient

Competent

Advanced Beginner

Novice

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In object-oriented programming, the single responsibility
principle states that every object should have a single
responsibility, and that responsibility should be entirely
encapsulated by the class. All its services should be narrowly
aligned with that responsibility.

http://en.wikipedia.org/wiki/Single_responsibility_principle

The term was introduced by Robert C. Martin [...]. Martin
described it as being based on the principle of cohesion, as
described by Tom DeMarco in his book Structured Analysis and
Systems Specification.

http://en.wikipedia.org/wiki/Single_responsibility_principle

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic

of a class that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such a class exhibits cohesion.

This is the Unix philosophy: Write

programs that do one thing and do

it well. Write programs to work

together.

Doug McIlroy

utility

 the state of being useful, profitable or beneficial
 useful, especially through having several functions
 functional rather than attractive

Concise Oxford English Dictionary

#include <stdlib.h>

Every class should

embody only about 3–5

distinct responsibilities.

Grady Booch, Object Solutions

One of the most foundational
principles of good design is:

Gather together those things
that change for the same
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,
should not have more than one
reason to change.

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

Interface inheritance (subtyping) is used
whenever one can imagine that client code
should depend on less functionality than the full
interface. Services are often partitioned into
several unrelated interfaces when it is possible to
partition the clients into different roles. For
example, an administrative interface is often
unrelated and distinct in the type system from
the interface used by “normal” clients.

"General Design Principles"
CORBAservices

The dependency
should be on the
interface, the
whole interface,
and nothing but
the interface.

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic

of a class that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such a class exhibits cohesion.

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic of

an interface that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such an interface exhibits cohesion.

public interface LineIO
{
 String read();
 void write(String toWrite);
}

public interface LineReader
{
 String read();
}

public interface LineWriter
{
 void write(String toWrite);
}

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In a purist view of object-oriented methodology,

dynamic dispatch is the only mechanism for

taking advantage of attributes that have been

forgotten by subsumption.

This position is often taken on abstraction

grounds: no knowledge should be obtainable
about objects except by invoking their methods.

In the purist approach, subsumption provides a

simple and effective mechanism for hiding
private attributes.

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

generalisation

specialisation

commonality

variation

public class RecentlyUsedList
{
 ...

 public int Count
 {
 get ...
 }
 public string this[int index]
 {
 get ...
 }
 public void Add(string newItem) ...
 ...
}

public class RecentlyUsedList
{
 private IList<string> items = new List<string>();

 public int Count
 {
 get
 {
 return items.Count;
 }
 }
 public string this[int index]
 {
 get
 {
 return items[index];
 }
 }
 public void Add(string newItem)
 {
 if(newItem == null)
 throw new ArgumentNullException();
 items.Remove(newItem);
 items.Insert(0, newItem);
 }
 ...
}

public class RecentlyUsedList : List<string>
{
 public override void Add(string newItem)
 {
 if(newItem == null)
 throw new ArgumentNullException();
 items.Remove(newItem);
 items.Insert(0, newItem);
 }
 ...
}

namespace List_spec
{
 ...
 [TestFixture]
 public class Addition
 {
 private List<string> list;
 [Setup]
 public void List_is_initially_empty()
 {
 list = ...
 }
 ...
 [Test]
 public void Addition_of_non_null_item_is_appended() ...
 [Test]
 public void Addition_of_null_is_permitted() ...
 [Test]
 public void Addition_of_duplicate_item_is_appended() ...
 ...
 }
 ...
}

namespace List_spec
{
 ...
 [TestFixture]
 public class Addition
 {
 private List<string> list;
 [Setup]
 public void List_is_initially_empty()
 {
 list = new List<string>();
 }
 ...
 [Test]
 public void Addition_of_non_null_item_is_appended() ...
 [Test]
 public void Addition_of_null_is_permitted() ...
 [Test]
 public void Addition_of_duplicate_item_is_appended() ...
 ...
 }
 ...
}

namespace List_spec
{
 ...
 [TestFixture]
 public class Addition
 {
 private List<string> list;
 [Setup]
 public void List_is_initially_empty()
 {
 list = new RecentlyUsedList();
 }
 ...
 [Test]
 public void Addition_of_non_null_item_is_appended() ...
 [Test]
 public void Addition_of_null_is_permitted() ...
 [Test]
 public void Addition_of_duplicate_item_is_appended() ...
 ...
 }
 ...
}

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

The principle stated that a good module structure

should be both open and closed:

 Closed, because clients need the module's

services to proceed with their own development,

and once they have settled on a version of the

module should not be affected by the

introduction of new services they do not need.

 Open, because there is no guarantee that we will

include right from the start every service

potentially useful to some client.

Bertrand Meyer

Object-Oriented Software Construction

[...] A good module structure should be

[...] closed [...] because clients need

the module's services to proceed with

their own development, and once they

have settled on a version of the

module should not be affected by the

introduction of new services they do

not need.

Bertrand Meyer

Object-Oriented Software Construction

[...] A good module structure should be

[...] open [...] because there is no

guarantee that we will include right

from the start every service potentially

useful to some client.

Bertrand Meyer

Object-Oriented Software Construction

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A myth in the object-oriented design

community goes something like this:

If you use object-oriented technology,

you can take any class someone else

wrote, and, by using it as a base class,

refine it to do a similar task.

Robert B Murray

C++ Strategies and Tactics

Published Interface is a term I used (first in
Refactoring) to refer to a class interface that's used
outside the code base that it's defined in.

The distinction between published and public is
actually more important than that between public and
private.

The reason is that with a non-published interface you
can change it and update the calling code since it is all
within a single code base. [...] But anything published
so you can't reach the calling code needs more
complicated treatment.

Martin Fowler
http://martinfowler.com/bliki/PublishedInterface.html

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In object-oriented programming, the dependency inversion
principle refers to a specific form of decoupling where
conventional dependency relationships established from high-
level, policy-setting modules to low-level, dependency
modules are inverted (i.e. reversed) for the purpose of
rendering high-level modules independent of the low-level
module implementation details.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

The principle states:

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details. Details should
depend upon abstractions.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

inversion, noun

 the action of inverting or the state of being

inverted

 reversal of the normal order of words,

normally for rhetorical effect

 an inverted interval, chord, or phrase

 a reversal of the normal decrease of air

temperature with altitude, or of water

temperature with depth

Concise Oxford English Dictionary

Stewart Brand, How Buildings Learn
See also http://www.laputan.org/mud/

package com.sun…;

Scenario buffering by dot-voting possible changes and invert dependencies as needed

One of the most foundational
principles of good design is:

Gather together those things
that change for the same
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,
should not have more than one
reason to change.

S

O

L

I

D

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

Expert

Proficient

Competent

Advanced Beginner

Novice

At some level

the style

becomes the

substance.

